
Local Adiabatic Mixing of Kramers Pairs of Majorana Bound States

Konrad Wölms,1 Ady Stern,2 and Karsten Flensberg1
1
Center for Quantum Devices, Niels Bohr Institute,

University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

2
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

(Dated: May 21, 2014)

We consider Kramers pairs of Majorana bound states under adiabatic time evolution. This is
important for the prospects of using such bound states as parity qubits. We show that local adiabatic
perturbations can cause a rotation in the space spanned by the Kramers pair. Hence the quantum
information is unprotected against local perturbations, in contrast to the case of single localized
Majorana bound states in systems with broken time reversal symmetry. We give an analytical and
a numerical example for such a rotation, and specify su�cient conditions under which a rotation is
avoided. We give a general scheme for determining when these conditions are satisfied, and exemplify
it with a general model of a quasi 1D time reversal symmetric topological superconductor.

Majorana bound states (or Majorana Fermions) in con-
densed matter systems have been the subject of a large
research e↵ort in the last few years. Among other rea-
sons, this e↵ort has been motivated by a number of re-
cent proposals for feasible experimental systems hosting
Majorana bound states (MBS)[1–3], and by their rele-
vance to topological quantum computation[4]. In super-
conducting systems, a MBS describes a localized zero en-
ergy solution of the Bogoliubov-deGennes (BdG) equa-
tion. Such a solution constitutes ”half” a Fermion, and
two such solutions span a fermionic mode, of two states.
The zero energy solutions of the BdG equations signify
a degeneracy of the superconducting many-body ground
state, defining a degenerate subspace within which ma-
nipulations are possible through adiabatic variation of
the Hamiltonian. A particularly interesting set of manip-
ulations is braiding of the positions of the MBSs (while
maintaining the degeneracy of the ground state), which
constitutes a set of non-abelian operations referred to
as gates. If the MBS are all spatially separated from
one another, these gates are expected to be topologically
protected. If the distance between the MBS, L, is much
larger than their localization length ⇠, the unitary trans-
formation associated with their braiding is topologically
stable, which means that corrections are exponentially
small in the ratio L/⇠. As such, they are exponentially
small in E

g

, the energy gap of the superconductor.

The isolation of single localized zero energy solutions
requires a system where time reversal symmetry (TRS) is
broken, since under TRS the solutions of the BdG equa-
tion form degenerate Kramers pairs, and isolation of an
odd number of localized solutions is impossible. Recently,
there has been a large interest in topological supercon-
ductors respecting TRS, i.e. in absence of magnetic fields
(or spontaneously broken TRS). A number of proposals
for systems in hybrid materials and structures[5–12] have
been put forward. Such systems accommodate Kramers
pairs of MBSs, and therefore do not allow for braiding of
single Majorana fermions. Since these systems allow for
braiding of Kramers pairs of MBS, the question of the

possible protection of quantum information in Kramers
pairs of MBSs arises. It has been suggested to use braid-
ing of such MBS pairs for topological quantum compu-
tation in a similar way to isolated MBS [13].

In this letter we show that MBS Kramers pairs are not
protected against local adiabatic changes of the Hamil-
tonian even if the parameter dependent Hamiltonian is
TRS for every value of the parameters. We also give a
characterization of adiabatic changes that maintain pro-
tection, which could form the basis of engineering sys-
tems with some degree of protection. Without this pro-
tection, Majorana qubits in TRS topological supercon-
ductors are prone to the decoherence by local perturba-
tion similar to non-topological qubits.

We consider a finite DIII wire, i.e. a 1D system with
time reversal symmetry T 2 = �1 and particle-hole sym-
metry, in the topological phase. There is a Kramers
pair of MBSs, �

L

and �̃
L

= T �
L

T �1, located on the
left end of the wire, and another pair, �

R

and �̃
R

, lo-
cated on the right end of the wire. Let us recall the
defining mathematical properties of Majorana operators,
which are �†

i

= �
i

and {�
i

, �
j

} = 2�
ij

, where i and j
are generic indexes, which may run over left and right
and time reversed partners. We define local mixing of
a Kramers pair as unitary transformations that only in-
volve operators of one Kramers pair, e.g. �

R

, �̃
R

. Such
transformations take the form U = ei�e'�R�̃R/2. We refer
to this as mixing because the transformation rotates the
corresponding Majoranas: U�

R

U† = �
R

cos' + �̃
R

sin'
and U �̃

R

U † = �̃
R

cos' � �
R

sin'. Before we show that
adiabatic processes may cause local mixing with a value
of ' that is generally non-quantized we discuss an im-
plication for the ground state of the system. We set
� = 0 because it is just an overall phase. The ground
state subspace can be described by forming the non-local
fermions c = 1

2 (�R+ i�
L

) and c̃ = 1
2 (�̃R� i�̃

L

), such that
T cT �1 = c̃. We label the ground states according to
the eigenvalues of the occupation number operators that
are associated with c and c̃. If the transformation U is
applied to the state |00i, whose first and second entries
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The setup

• Time reversal symmetric Kitaev double chain (DIII): Kramers pairs of Majoranas 

!

!

!

!

!

•   

• also: particle-hole symmetry

2

correspond to the occupations of the c, c̃ fermions, respec-
tively, its operation yields U |00i = cos '

2 |00i+ sin '

2 |11i.
This shows that a finite 'mixes the fermion parity among
the initial basis choice of time reversed partners.

In an adiabatic process a set of parameters, ⌘, varies
slowly in time. To each parameter value corresponds a
Hamiltonian H(⌘), which we assume to be time rever-
sal symmetric for all ⌘: [H(⌘), T ] = 0. H(⌘) is there-
fore always in the DIII symmetry class and has Kramers
pairs of MBSs. We further assume, for simplicity, that
the variation of ⌘ changes the Hamiltonian only at the
right side of the wire. Then, �

L

and �̃
L

do not vary with
⌘. Thus, everything that follows will only use �

R

and
�̃
R

(and their linear combinations), for which we drop the
subscript R. For each ⌘ we choose a particular Kramers
pair of MBS �⌘ and �̃⌘. This choice is not unique, be-
cause there are linear combinations of �⌘ and �̃⌘ that
also form a Kramers pair of MBSs. Generally, any adi-
abatically time-evolved Majorana operator on the right
end of the wire, �(t), that at t = 0 commuted with the
Hamiltonian, can be expressed as a linear combination of
�⌘ and �̃⌘:

�(t) = a(t)�⌘(t) + b(t)�̃⌘(t). (1)

Being initially a Majorana operator, it evolves into a Ma-
jorana operator at all later times. For �(t) in Eq. (1) to
be self-adjoint, a and b have to be real. In addition for
�(t) to square to 1, a and b have to satisfy a2 + b2 = 1.
Therefore we parameterize a and b by trigonometric func-
tions: a(t) = cos('(t) � '0) and b(t) = sin('(t) � '0).
There is only one free parameter , ', therefore all possible
processes form an Abelian group. Because the operator
�(t) is at zero energy during the adiabatic process it al-
ways commutes with the Hamiltonian, which determines
the time-evolution: d

dt�(t) = i [�(t), H(t)] = 0. It fol-

lows that
�
�(t), d

dt �̃(t)
 

= 0 and explicitly evaluating
this anti-commutator[14] one finds

0 =
�
�(t), d

dt �̃(t)
 

= �2'̇+
�
�⌘(t), ˙̃�⌘(t)

 
. (2)

This gives the important equation '(t) =
1
2

R
t

�
�⌘(t0), ˙̃�⌘(t0)

 
dt0, which can be rewritten to

be independent of time: ' = 1
2

R
W {�⌘,r⌘�̃⌘} d⌘, where

W is the path in parameter space traversed by ⌘(t). If
the path is closed, the result will not depend on our
initial choices of �⌘ and �̃⌘ and we can write the formula
for ' in the standard way for geometrical phases as

' =

I
W

Ad⌘, (3a)

A = 1
2 {�⌘,r⌘�̃⌘} , (3b)

where A is the corresponding Berry potential. By ap-
plying stokes theorem, we can obtain the Berry curvature

�1a"�1b"�2a"

�1a#�1b#�2a#

µ
P

�

c†1�c1�

�[c1"c1# + c†1#c
†
1"]

" :
# :

c1�c2�c3�c4�c5�c6�c7�

FIG. 1. DIII model built out of two Kitaev chains at the
special point, where the Majorana fermions are perfectly lo-
calized. The rectangles correspond to the original electronic
states, and the circles correspond to their decomposition into
Majorana operators according to c

i�

= 1
2 (�

ia�

+ i�
ib�

). Lines
indicate couplings. Our model consists of the indicated end
of the wire with one Kramers pair of Majorana fermions and
one Kramers pair of bulk states. Furthermore it is illustrated
how a local chemical potential and s-wave pairing couple the
Majorana operators in our model. Importantly, the s-wave
pairing couples the two initial Kitaev chains.

which is independent of our initial choices. Its compo-
nents are given by ⌦
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A simple example with non-zero Berry phase can be

constructed from a TRS analog of the 1D Kitaev chain
[15], which is the simplest 1D model that supports Ma-
jorana fermions. Kitaev’s original model consists of spin-
less electrons living on a discrete 1D chain. In sec-
ond quantization the electrons are described by complex
fermionic operators each of which may be decomposed
into two hermitian Majorana operators. In Kitaev’s origi-
nal spinless model at the special point in parameter space
where electron hopping and p-wave pairing amplitude are
equal and the chemical potential is zero, the model dimer-
izes in a way that leaves a perfectly localized MBS at
each end. To construct a time reversal invariant ana-
log, we take two copies of the Kitaev chain with opposite
spin directions and opposite amplitude for p-wave pair-
ing, at the same special point in parameter space. This
is sketched in the top of Fig. 1. Our minimal model in-
cludes then, starting from one end of the wire, exactly
one MBS Kramers pair and one Kramers pair of bulk
states. This is illustrated in Fig. 1. The Hamiltonian for
this system takes the form

H0 =
Eg
2

X
�

i�2a��1b� = Eg
X
�

d†
�

d
�

+ const. (4)

The last expression is obtained by introducing the
more familiar fermionic Bogoliubov quasiparticle oper-
ators d

�

= 1
2 (�2a� + i�1b�).

For the two MBS to mix in a way that preserves TRS,
we need to couple them to the bulk fermionic mode.

T �ij"T �1 = �ij# , T 2 = �1
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• Now: Kramers pairs of Majoranas at same site: fate of protection? 
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correspond to the occupations of the c, c̃ fermions, respec-
tively, its operation yields U |00i = cos '

2 |00i+ sin '

2 |11i.
This shows that a finite 'mixes the fermion parity among
the initial basis choice of time reversed partners.

In an adiabatic process a set of parameters, ⌘, varies
slowly in time. To each parameter value corresponds a
Hamiltonian H(⌘), which we assume to be time rever-
sal symmetric for all ⌘: [H(⌘), T ] = 0. H(⌘) is there-
fore always in the DIII symmetry class and has Kramers
pairs of MBSs. We further assume, for simplicity, that
the variation of ⌘ changes the Hamiltonian only at the
right side of the wire. Then, �

L

and �̃
L

do not vary with
⌘. Thus, everything that follows will only use �

R

and
�̃
R

(and their linear combinations), for which we drop the
subscript R. For each ⌘ we choose a particular Kramers
pair of MBS �⌘ and �̃⌘. This choice is not unique, be-
cause there are linear combinations of �⌘ and �̃⌘ that
also form a Kramers pair of MBSs. Generally, any adi-
abatically time-evolved Majorana operator on the right
end of the wire, �(t), that at t = 0 commuted with the
Hamiltonian, can be expressed as a linear combination of
�⌘ and �̃⌘:

�(t) = a(t)�⌘(t) + b(t)�̃⌘(t). (1)

Being initially a Majorana operator, it evolves into a Ma-
jorana operator at all later times. For �(t) in Eq. (1) to
be self-adjoint, a and b have to be real. In addition for
�(t) to square to 1, a and b have to satisfy a2 + b2 = 1.
Therefore we parameterize a and b by trigonometric func-
tions: a(t) = cos('(t) � '0) and b(t) = sin('(t) � '0).
There is only one free parameter , ', therefore all possible
processes form an Abelian group. Because the operator
�(t) is at zero energy during the adiabatic process it al-
ways commutes with the Hamiltonian, which determines
the time-evolution: d

dt�(t) = i [�(t), H(t)] = 0. It fol-

lows that
�
�(t), d

dt �̃(t)
 

= 0 and explicitly evaluating
this anti-commutator[14] one finds

0 =
�
�(t), d

dt �̃(t)
 

= �2'̇+
�
�⌘(t), ˙̃�⌘(t)

 
. (2)

This gives the important equation '(t) =
1
2

R
t

�
�⌘(t0), ˙̃�⌘(t0)

 
dt0, which can be rewritten to

be independent of time: ' = 1
2

R
W {�⌘,r⌘�̃⌘} d⌘, where

W is the path in parameter space traversed by ⌘(t). If
the path is closed, the result will not depend on our
initial choices of �⌘ and �̃⌘ and we can write the formula
for ' in the standard way for geometrical phases as

' =

I
W

Ad⌘, (3a)

A = 1
2 {�⌘,r⌘�̃⌘} , (3b)

where A is the corresponding Berry potential. By ap-
plying stokes theorem, we can obtain the Berry curvature
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FIG. 1. DIII model built out of two Kitaev chains at the
special point, where the Majorana fermions are perfectly lo-
calized. The rectangles correspond to the original electronic
states, and the circles correspond to their decomposition into
Majorana operators according to c
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). Lines
indicate couplings. Our model consists of the indicated end
of the wire with one Kramers pair of Majorana fermions and
one Kramers pair of bulk states. Furthermore it is illustrated
how a local chemical potential and s-wave pairing couple the
Majorana operators in our model. Importantly, the s-wave
pairing couples the two initial Kitaev chains.
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A simple example with non-zero Berry phase can be

constructed from a TRS analog of the 1D Kitaev chain
[15], which is the simplest 1D model that supports Ma-
jorana fermions. Kitaev’s original model consists of spin-
less electrons living on a discrete 1D chain. In sec-
ond quantization the electrons are described by complex
fermionic operators each of which may be decomposed
into two hermitian Majorana operators. In Kitaev’s origi-
nal spinless model at the special point in parameter space
where electron hopping and p-wave pairing amplitude are
equal and the chemical potential is zero, the model dimer-
izes in a way that leaves a perfectly localized MBS at
each end. To construct a time reversal invariant ana-
log, we take two copies of the Kitaev chain with opposite
spin directions and opposite amplitude for p-wave pair-
ing, at the same special point in parameter space. This
is sketched in the top of Fig. 1. Our minimal model in-
cludes then, starting from one end of the wire, exactly
one MBS Kramers pair and one Kramers pair of bulk
states. This is illustrated in Fig. 1. The Hamiltonian for
this system takes the form

H0 =
Eg
2

X
�

i�2a��1b� = Eg
X
�

d†
�

d
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+ const. (4)

The last expression is obtained by introducing the
more familiar fermionic Bogoliubov quasiparticle oper-
ators d

�

= 1
2 (�2a� + i�1b�).

For the two MBS to mix in a way that preserves TRS,
we need to couple them to the bulk fermionic mode.
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Simple analytical model

• Kramers pair of zero energy Majorana bound states in terms of         :
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the variation of ⌘ changes the Hamiltonian only at the
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be self-adjoint, a and b have to be real. In addition for
�(t) to square to 1, a and b have to satisfy a2 + b2 = 1.
Therefore we parameterize a and b by trigonometric func-
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There is only one free parameter , ', therefore all possible
processes form an Abelian group. Because the operator
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ways commutes with the Hamiltonian, which determines
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lows that
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W is the path in parameter space traversed by ⌘(t). If
the path is closed, the result will not depend on our
initial choices of �⌘ and �̃⌘ and we can write the formula
for ' in the standard way for geometrical phases as

' =
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Ad⌘, (3a)

A = 1
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where A is the corresponding Berry potential. By ap-
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FIG. 1. DIII model built out of two Kitaev chains at the
special point, where the Majorana fermions are perfectly lo-
calized. The rectangles correspond to the original electronic
states, and the circles correspond to their decomposition into
Majorana operators according to c
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). Lines
indicate couplings. Our model consists of the indicated end
of the wire with one Kramers pair of Majorana fermions and
one Kramers pair of bulk states. Furthermore it is illustrated
how a local chemical potential and s-wave pairing couple the
Majorana operators in our model. Importantly, the s-wave
pairing couples the two initial Kitaev chains.
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A simple example with non-zero Berry phase can be

constructed from a TRS analog of the 1D Kitaev chain
[15], which is the simplest 1D model that supports Ma-
jorana fermions. Kitaev’s original model consists of spin-
less electrons living on a discrete 1D chain. In sec-
ond quantization the electrons are described by complex
fermionic operators each of which may be decomposed
into two hermitian Majorana operators. In Kitaev’s origi-
nal spinless model at the special point in parameter space
where electron hopping and p-wave pairing amplitude are
equal and the chemical potential is zero, the model dimer-
izes in a way that leaves a perfectly localized MBS at
each end. To construct a time reversal invariant ana-
log, we take two copies of the Kitaev chain with opposite
spin directions and opposite amplitude for p-wave pair-
ing, at the same special point in parameter space. This
is sketched in the top of Fig. 1. Our minimal model in-
cludes then, starting from one end of the wire, exactly
one MBS Kramers pair and one Kramers pair of bulk
states. This is illustrated in Fig. 1. The Hamiltonian for
this system takes the form

H0 =
Eg
2

X
�

i�2a��1b� = Eg
X
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d†
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+ const. (4)

The last expression is obtained by introducing the
more familiar fermionic Bogoliubov quasiparticle oper-
ators d

�

= 1
2 (�2a� + i�1b�).

For the two MBS to mix in a way that preserves TRS,
we need to couple them to the bulk fermionic mode.
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This shows that a finite 'mixes the fermion parity among
the initial basis choice of time reversed partners.

In an adiabatic process a set of parameters, ⌘, varies
slowly in time. To each parameter value corresponds a
Hamiltonian H(⌘), which we assume to be time rever-
sal symmetric for all ⌘: [H(⌘), T ] = 0. H(⌘) is there-
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also form a Kramers pair of MBSs. Generally, any adi-
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Hamiltonian, can be expressed as a linear combination of
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Being initially a Majorana operator, it evolves into a Ma-
jorana operator at all later times. For �(t) in Eq. (1) to
be self-adjoint, a and b have to be real. In addition for
�(t) to square to 1, a and b have to satisfy a2 + b2 = 1.
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There is only one free parameter , ', therefore all possible
processes form an Abelian group. Because the operator
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ways commutes with the Hamiltonian, which determines
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initial choices of �⌘ and �̃⌘ and we can write the formula
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FIG. 1. DIII model built out of two Kitaev chains at the
special point, where the Majorana fermions are perfectly lo-
calized. The rectangles correspond to the original electronic
states, and the circles correspond to their decomposition into
Majorana operators according to c
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indicate couplings. Our model consists of the indicated end
of the wire with one Kramers pair of Majorana fermions and
one Kramers pair of bulk states. Furthermore it is illustrated
how a local chemical potential and s-wave pairing couple the
Majorana operators in our model. Importantly, the s-wave
pairing couples the two initial Kitaev chains.
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A simple example with non-zero Berry phase can be

constructed from a TRS analog of the 1D Kitaev chain
[15], which is the simplest 1D model that supports Ma-
jorana fermions. Kitaev’s original model consists of spin-
less electrons living on a discrete 1D chain. In sec-
ond quantization the electrons are described by complex
fermionic operators each of which may be decomposed
into two hermitian Majorana operators. In Kitaev’s origi-
nal spinless model at the special point in parameter space
where electron hopping and p-wave pairing amplitude are
equal and the chemical potential is zero, the model dimer-
izes in a way that leaves a perfectly localized MBS at
each end. To construct a time reversal invariant ana-
log, we take two copies of the Kitaev chain with opposite
spin directions and opposite amplitude for p-wave pair-
ing, at the same special point in parameter space. This
is sketched in the top of Fig. 1. Our minimal model in-
cludes then, starting from one end of the wire, exactly
one MBS Kramers pair and one Kramers pair of bulk
states. This is illustrated in Fig. 1. The Hamiltonian for
this system takes the form

H0 =
Eg
2

X
�

i�2a��1b� = Eg
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d†
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+ const. (4)

The last expression is obtained by introducing the
more familiar fermionic Bogoliubov quasiparticle oper-
ators d

�

= 1
2 (�2a� + i�1b�).

For the two MBS to mix in a way that preserves TRS,
we need to couple them to the bulk fermionic mode.

3

One coupling we use is a local change of the chemi-
cal potential: H

µ

= µ
P

�

c†1�c1�. This coupling mixes
the end point with the bulk, but does not mix the two
spin directions. We expect that the di↵erent spin direc-
tions need to be coupled, to have mixing of the Kramers
pair. For this purpose we introduce s-wave pairing,
H� = �(c1"c1# + c†1#c

†
1"), on the last site. We write

the new terms in terms of Majorana operators to better
understand which Majoranas couple:

H
µ

=
µ

2

X
�

(i�1a��1b� + 1) , (5a)

H� =
�

2
(i�1a"�1b# + i�1b"�1a#) . (5b)

The full Hamiltonian of our toy model now reads is H =
H0+H

µ

+H� and the couplings are illustrated in Fig. 1.
The new Kramers pair of zero energy Majorana oper-

ators, in the presence of all couplings, is determined by
the conditions [H, �] = 0 and �̃ = T �T �1 . To present
the solutions more compactly, we change parameters:

µ = B cos↵, (6a)

� = B sin↵. (6b)

Here ↵ parametrizes the ratio of bulk coupling between
same spin and opposite spin. Additionally we introduce
tan ✓ = B/Eg, which measures coupling between the ini-
tial Majoranas and the bulk. With this notation, the
results are

�(✓,↵) = cos ✓�1a" + sin ✓ (cos↵�1b" + sin↵�1b#), (7a)

�̃(✓,↵) = cos ✓�1a# � sin ✓ (cos↵�1b# � sin↵�1b"). (7b)

Equation (7) together with (3) is used to calculate the
Berry potential:

A
↵

=
1

2
sin2 ✓. (8a)

A
✓

= 0 (8b)

For a loop in parameter space ↵ : 0 ! 2⇡, one
thus gets the nontrivial contribution ' =

H
A

↵

d↵ =
⇡ sin2 ✓. Moreover, the Berry curvature is given by
⌦

✓↵

= sin ✓ cos ✓, which is non-zero. Note that for small
B, the mixing is proportional to 1/E2

G

. Thus an external
low frequency noise that leads to a fluctuating time de-
pendence of the Hamiltonian would lead to a decoherence
time that grows only algebraically large with E

G

.
For the rest of this letter we will use BdG formalism,

in which an operator is expressed as a four component
spinor, and use the bra and ket notation to denote these
spinors. The usual translation rules from second quan-
tized operators to BdG states imply for Eq. (3) that
A = 1

2 {�⌘,r⌘�̃⌘} = h�⌘|r⌘|�̃⌘i. The factor of 1
2 is

a result of the Majorana states being normalized to 1,
while the operators anti-commute with themselves to 2.

As a second example for mixing we present numerical
calculations of the Berry curvature [16] for a continuous
1D TRS p-wave superconductor. The Hamiltonian then
reads,

H =

✓
p2

2m
� µ(x)

◆
⌧
z

+ p(↵ · �)⌧
z

+ p(v� · �)⌧
x

+�⌧
x

,

(9)
with an associated operator spinor  =
( ", #, 

†
#,� 

†
")

T . The symmetries of this Hamilto-
nian are P = �

y

⌧
y

K and T = i�
y

K, making DIII the
relevant symmetry class. The Hamiltonian describes
a 1D system with p-wave pairing, v�, s-wave pairing,
�, and spin-orbit interaction, ↵. If ↵ = 0, � = 0 and
v� = (v

x

, 0, 0)T , this model is the continuum version of
two Kitaev wires with opposite spin and p-wave pairing.
If ↵ and � are non-zero, the two spin directions mix.
For certain parameter values the Hamiltonian (9) is in

the topological phase. This can then be controlled by
the chemical potential, which means that the Hamilto-
nian will be in the topological phase for µ > µc and in
the trivial phase for µ < µc, where µc is determined
by the other parameters in the Hamiltonian. We in-
troduced a position dependent chemical potential of the
form µ(x) = µ0 +µ tanh(x�x0

w

), that crosses from µ0 �µ
to µ0 + µ around x0. As long as µ

c

is within this in-
terval, there will be a Kramers pair of MBS localized
around x0. We will now study the adiabatic process in-
volving this Kramers pair, where the parameters w and
µ0 change. Note that both parameters enter the chemical
potential which does not couple spin directions. Figure
2 shows how a finite Berry curvature is obtained if the
Hamiltonian contains parameters that mix certain spin
directions. The main plot only shows the Berry curvature
in one point, which is of course not enough to calculate
a Berry phase. The parameter dependence of the Berry
curvature is exemplified in the inset. This shows that
there is a non-zero ⌦ in a whole area.
As the last major part of the paper we show a su�cient

condition for ' = 0. Mixing cannot occur if the system
can be decomposed into two uncoupled one-dimensional
subsystems that are time-reversed partners of one an-
other and this decomposition can be done independently
of ⌘. If such a decomposition exists, it can be described
by a non-singular hermitian operator ⇧. We require the
operator to anti-commute with T , such that ⇧ will take
opposite eigenvalues on the two subsystems. We fur-
ther require it to commute with P, which means that
the MBSs can be chosen as eigenvectors of ⇧.
To formalize, if we find an operator ⇧ that satisfies

[H(⌘),⇧] = 0, (10a)

[P,⇧] = 0, (10b)

{T ,⇧} = 0, (10c)

we can choose ⇧|�⌘i = |�⌘i and ⇧|�̃⌘i = �|�̃⌘i. Then
r⌘|�̃⌘i is also an eigenstate of ⇧ with eigenvalue �1 and

�ij�

µ = B cos(↵) , � = B sin(↵) , tan(✓) = B/Eg
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The new Kramers pair of zero energy Majorana oper-

ators, in the presence of all couplings, is determined by
the conditions [H, �] = 0 and �̃ = T �T �1 . To present
the solutions more compactly, we change parameters:

µ = B cos↵, (6a)

� = B sin↵. (6b)

Here ↵ parametrizes the ratio of bulk coupling between
same spin and opposite spin. Additionally we introduce
tan ✓ = B/Eg, which measures coupling between the ini-
tial Majoranas and the bulk. With this notation, the
results are

�(✓,↵) = cos ✓�1a" + sin ✓ (cos↵�1b" + sin↵�1b#), (7a)

�̃(✓,↵) = cos ✓�1a# � sin ✓ (cos↵�1b# � sin↵�1b"). (7b)

Equation (7) together with (3) is used to calculate the
Berry potential:

A
↵

=
1

2
sin2 ✓. (8a)

A
✓

= 0 (8b)

For a loop in parameter space ↵ : 0 ! 2⇡, one
thus gets the nontrivial contribution ' =

H
A

↵

d↵ =
⇡ sin2 ✓. Moreover, the Berry curvature is given by
⌦

✓↵

= sin ✓ cos ✓, which is non-zero. Note that for small
B, the mixing is proportional to 1/E2

G

. Thus an external
low frequency noise that leads to a fluctuating time de-
pendence of the Hamiltonian would lead to a decoherence
time that grows only algebraically large with E

G

.
For the rest of this letter we will use BdG formalism,

in which an operator is expressed as a four component
spinor, and use the bra and ket notation to denote these
spinors. The usual translation rules from second quan-
tized operators to BdG states imply for Eq. (3) that
A = 1

2 {�⌘,r⌘�̃⌘} = h�⌘|r⌘|�̃⌘i. The factor of 1
2 is

a result of the Majorana states being normalized to 1,
while the operators anti-commute with themselves to 2.

As a second example for mixing we present numerical
calculations of the Berry curvature [16] for a continuous
1D TRS p-wave superconductor. The Hamiltonian then
reads,

H =

✓
p2

2m
� µ(x)

◆
⌧
z

+ p(↵ · �)⌧
z

+ p(v� · �)⌧
x

+�⌧
x

,

(9)
with an associated operator spinor  =
( ", #, 

†
#,� 

†
")

T . The symmetries of this Hamilto-
nian are P = �

y

⌧
y

K and T = i�
y

K, making DIII the
relevant symmetry class. The Hamiltonian describes
a 1D system with p-wave pairing, v�, s-wave pairing,
�, and spin-orbit interaction, ↵. If ↵ = 0, � = 0 and
v� = (v

x

, 0, 0)T , this model is the continuum version of
two Kitaev wires with opposite spin and p-wave pairing.
If ↵ and � are non-zero, the two spin directions mix.
For certain parameter values the Hamiltonian (9) is in

the topological phase. This can then be controlled by
the chemical potential, which means that the Hamilto-
nian will be in the topological phase for µ > µc and in
the trivial phase for µ < µc, where µc is determined
by the other parameters in the Hamiltonian. We in-
troduced a position dependent chemical potential of the
form µ(x) = µ0 +µ tanh(x�x0

w

), that crosses from µ0 �µ
to µ0 + µ around x0. As long as µ

c

is within this in-
terval, there will be a Kramers pair of MBS localized
around x0. We will now study the adiabatic process in-
volving this Kramers pair, where the parameters w and
µ0 change. Note that both parameters enter the chemical
potential which does not couple spin directions. Figure
2 shows how a finite Berry curvature is obtained if the
Hamiltonian contains parameters that mix certain spin
directions. The main plot only shows the Berry curvature
in one point, which is of course not enough to calculate
a Berry phase. The parameter dependence of the Berry
curvature is exemplified in the inset. This shows that
there is a non-zero ⌦ in a whole area.
As the last major part of the paper we show a su�cient

condition for ' = 0. Mixing cannot occur if the system
can be decomposed into two uncoupled one-dimensional
subsystems that are time-reversed partners of one an-
other and this decomposition can be done independently
of ⌘. If such a decomposition exists, it can be described
by a non-singular hermitian operator ⇧. We require the
operator to anti-commute with T , such that ⇧ will take
opposite eigenvalues on the two subsystems. We fur-
ther require it to commute with P, which means that
the MBSs can be chosen as eigenvectors of ⇧.
To formalize, if we find an operator ⇧ that satisfies

[H(⌘),⇧] = 0, (10a)

[P,⇧] = 0, (10b)

{T ,⇧} = 0, (10c)

we can choose ⇧|�⌘i = |�⌘i and ⇧|�̃⌘i = �|�̃⌘i. Then
r⌘|�̃⌘i is also an eigenstate of ⇧ with eigenvalue �1 and



Adiabatic time reversal symmetric evolution

• More generally: look at Hamiltonian           respecting TRS,  

• For each value of    , there are two Majoranas:        and 

• Adiabatic modification of     in a loop: 

• For Majoranas, this implies

H(~⌘) [H(~⌘), T ] = 0

~⌘ �~⌘ �̃~⌘

~⌘

a(t)2 + b(t)2 = 1 = ã(t)2 + b̃(t)2 , a(t), b(t), ã(t), b̃(t) 2 R

�~⌘ ! �(t) = a(t) �~⌘(t) + b(t) �̃~⌘(t) ,

�̃~⌘ ! �̃(t) = ã(t) �~⌘(t) + b̃(t) �̃~⌘(t)

~⌘ ⌘ µ

Eg
,

�

Eg

2

correspond to the occupations of the c, c̃ fermions, respec-
tively, its operation yields U |00i = cos '

2 |00i+ sin '

2 |11i.
This shows that a finite 'mixes the fermion parity among
the initial basis choice of time reversed partners.

In an adiabatic process a set of parameters, ⌘, varies
slowly in time. To each parameter value corresponds a
Hamiltonian H(⌘), which we assume to be time rever-
sal symmetric for all ⌘: [H(⌘), T ] = 0. H(⌘) is there-
fore always in the DIII symmetry class and has Kramers
pairs of MBSs. We further assume, for simplicity, that
the variation of ⌘ changes the Hamiltonian only at the
right side of the wire. Then, �

L

and �̃
L

do not vary with
⌘. Thus, everything that follows will only use �

R

and
�̃
R

(and their linear combinations), for which we drop the
subscript R. For each ⌘ we choose a particular Kramers
pair of MBS �⌘ and �̃⌘. This choice is not unique, be-
cause there are linear combinations of �⌘ and �̃⌘ that
also form a Kramers pair of MBSs. Generally, any adi-
abatically time-evolved Majorana operator on the right
end of the wire, �(t), that at t = 0 commuted with the
Hamiltonian, can be expressed as a linear combination of
�⌘ and �̃⌘:

�(t) = a(t)�⌘(t) + b(t)�̃⌘(t). (1)

Being initially a Majorana operator, it evolves into a Ma-
jorana operator at all later times. For �(t) in Eq. (1) to
be self-adjoint, a and b have to be real. In addition for
�(t) to square to 1, a and b have to satisfy a2 + b2 = 1.
Therefore we parameterize a and b by trigonometric func-
tions: a(t) = cos('(t) � '0) and b(t) = sin('(t) � '0).
There is only one free parameter , ', therefore all possible
processes form an Abelian group. Because the operator
�(t) is at zero energy during the adiabatic process it al-
ways commutes with the Hamiltonian, which determines
the time-evolution: d

dt�(t) = i [�(t), H(t)] = 0. It fol-

lows that
�
�(t), d

dt �̃(t)
 

= 0 and explicitly evaluating
this anti-commutator[14] one finds

0 =
�
�(t), d

dt �̃(t)
 

= �2'̇+
�
�⌘(t), ˙̃�⌘(t)

 
. (2)

This gives the important equation '(t) =
1
2

R
t

�
�⌘(t0), ˙̃�⌘(t0)

 
dt0, which can be rewritten to

be independent of time: ' = 1
2

R
W {�⌘,r⌘�̃⌘} d⌘, where

W is the path in parameter space traversed by ⌘(t). If
the path is closed, the result will not depend on our
initial choices of �⌘ and �̃⌘ and we can write the formula
for ' in the standard way for geometrical phases as

' =

I
W

Ad⌘, (3a)

A = 1
2 {�⌘,r⌘�̃⌘} , (3b)

where A is the corresponding Berry potential. By ap-
plying stokes theorem, we can obtain the Berry curvature
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FIG. 1. DIII model built out of two Kitaev chains at the
special point, where the Majorana fermions are perfectly lo-
calized. The rectangles correspond to the original electronic
states, and the circles correspond to their decomposition into
Majorana operators according to c

i�

= 1
2 (�

ia�

+ i�
ib�

). Lines
indicate couplings. Our model consists of the indicated end
of the wire with one Kramers pair of Majorana fermions and
one Kramers pair of bulk states. Furthermore it is illustrated
how a local chemical potential and s-wave pairing couple the
Majorana operators in our model. Importantly, the s-wave
pairing couples the two initial Kitaev chains.

which is independent of our initial choices. Its compo-
nents are given by ⌦

⌘i⌘j = @
⌘iA⌘j � @

⌘jA⌘i .
A simple example with non-zero Berry phase can be

constructed from a TRS analog of the 1D Kitaev chain
[15], which is the simplest 1D model that supports Ma-
jorana fermions. Kitaev’s original model consists of spin-
less electrons living on a discrete 1D chain. In sec-
ond quantization the electrons are described by complex
fermionic operators each of which may be decomposed
into two hermitian Majorana operators. In Kitaev’s origi-
nal spinless model at the special point in parameter space
where electron hopping and p-wave pairing amplitude are
equal and the chemical potential is zero, the model dimer-
izes in a way that leaves a perfectly localized MBS at
each end. To construct a time reversal invariant ana-
log, we take two copies of the Kitaev chain with opposite
spin directions and opposite amplitude for p-wave pair-
ing, at the same special point in parameter space. This
is sketched in the top of Fig. 1. Our minimal model in-
cludes then, starting from one end of the wire, exactly
one MBS Kramers pair and one Kramers pair of bulk
states. This is illustrated in Fig. 1. The Hamiltonian for
this system takes the form

H0 =
Eg
2

X
�

i�2a��1b� = Eg
X
�

d†
�

d
�

+ const. (4)

The last expression is obtained by introducing the
more familiar fermionic Bogoliubov quasiparticle oper-
ators d

�

= 1
2 (�2a� + i�1b�).

For the two MBS to mix in a way that preserves TRS,
we need to couple them to the bulk fermionic mode.

)

~⌘(tinitial) = ~⌘(tfinal)



Adiabatic evolution
• Define: 

• From there: 

!

• Rewrite as integral over path      of         in parameter space

a(t) = cos('(t)� '0) , b(t) = sin('(t)� '0)

d

dt
�̃(t) = i[�̃(t), H(~⌘(t)] = 0

) 0 = {�(t), d
dt

�̃(t)} = �2'̇+ {�~⌘(t), ˙̃� ~⌘(t)
}

~⌘(t)W

' =

I

W
~Ad~⌘ , ~A =

1

2
{�~⌘,r~⌘�̃~⌘}

(= Berry phase & Berry connection)



Back to example
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the initial basis choice of time reversed partners.

In an adiabatic process a set of parameters, ⌘, varies
slowly in time. To each parameter value corresponds a
Hamiltonian H(⌘), which we assume to be time rever-
sal symmetric for all ⌘: [H(⌘), T ] = 0. H(⌘) is there-
fore always in the DIII symmetry class and has Kramers
pairs of MBSs. We further assume, for simplicity, that
the variation of ⌘ changes the Hamiltonian only at the
right side of the wire. Then, �
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do not vary with
⌘. Thus, everything that follows will only use �
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(and their linear combinations), for which we drop the
subscript R. For each ⌘ we choose a particular Kramers
pair of MBS �⌘ and �̃⌘. This choice is not unique, be-
cause there are linear combinations of �⌘ and �̃⌘ that
also form a Kramers pair of MBSs. Generally, any adi-
abatically time-evolved Majorana operator on the right
end of the wire, �(t), that at t = 0 commuted with the
Hamiltonian, can be expressed as a linear combination of
�⌘ and �̃⌘:

�(t) = a(t)�⌘(t) + b(t)�̃⌘(t). (1)

Being initially a Majorana operator, it evolves into a Ma-
jorana operator at all later times. For �(t) in Eq. (1) to
be self-adjoint, a and b have to be real. In addition for
�(t) to square to 1, a and b have to satisfy a2 + b2 = 1.
Therefore we parameterize a and b by trigonometric func-
tions: a(t) = cos('(t) � '0) and b(t) = sin('(t) � '0).
There is only one free parameter , ', therefore all possible
processes form an Abelian group. Because the operator
�(t) is at zero energy during the adiabatic process it al-
ways commutes with the Hamiltonian, which determines
the time-evolution: d

dt�(t) = i [�(t), H(t)] = 0. It fol-

lows that
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�(t), d

dt �̃(t)
 

= 0 and explicitly evaluating
this anti-commutator[14] one finds

0 =
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�(t), d
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This gives the important equation '(t) =
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dt0, which can be rewritten to

be independent of time: ' = 1
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W {�⌘,r⌘�̃⌘} d⌘, where

W is the path in parameter space traversed by ⌘(t). If
the path is closed, the result will not depend on our
initial choices of �⌘ and �̃⌘ and we can write the formula
for ' in the standard way for geometrical phases as

' =

I
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Ad⌘, (3a)

A = 1
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where A is the corresponding Berry potential. By ap-
plying stokes theorem, we can obtain the Berry curvature
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FIG. 1. DIII model built out of two Kitaev chains at the
special point, where the Majorana fermions are perfectly lo-
calized. The rectangles correspond to the original electronic
states, and the circles correspond to their decomposition into
Majorana operators according to c
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). Lines
indicate couplings. Our model consists of the indicated end
of the wire with one Kramers pair of Majorana fermions and
one Kramers pair of bulk states. Furthermore it is illustrated
how a local chemical potential and s-wave pairing couple the
Majorana operators in our model. Importantly, the s-wave
pairing couples the two initial Kitaev chains.
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A simple example with non-zero Berry phase can be

constructed from a TRS analog of the 1D Kitaev chain
[15], which is the simplest 1D model that supports Ma-
jorana fermions. Kitaev’s original model consists of spin-
less electrons living on a discrete 1D chain. In sec-
ond quantization the electrons are described by complex
fermionic operators each of which may be decomposed
into two hermitian Majorana operators. In Kitaev’s origi-
nal spinless model at the special point in parameter space
where electron hopping and p-wave pairing amplitude are
equal and the chemical potential is zero, the model dimer-
izes in a way that leaves a perfectly localized MBS at
each end. To construct a time reversal invariant ana-
log, we take two copies of the Kitaev chain with opposite
spin directions and opposite amplitude for p-wave pair-
ing, at the same special point in parameter space. This
is sketched in the top of Fig. 1. Our minimal model in-
cludes then, starting from one end of the wire, exactly
one MBS Kramers pair and one Kramers pair of bulk
states. This is illustrated in Fig. 1. The Hamiltonian for
this system takes the form

H0 =
Eg
2

X
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i�2a��1b� = Eg
X
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+ const. (4)

The last expression is obtained by introducing the
more familiar fermionic Bogoliubov quasiparticle oper-
ators d

�

= 1
2 (�2a� + i�1b�).

For the two MBS to mix in a way that preserves TRS,
we need to couple them to the bulk fermionic mode.
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tively, its operation yields U |00i = cos '
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This shows that a finite 'mixes the fermion parity among
the initial basis choice of time reversed partners.

In an adiabatic process a set of parameters, ⌘, varies
slowly in time. To each parameter value corresponds a
Hamiltonian H(⌘), which we assume to be time rever-
sal symmetric for all ⌘: [H(⌘), T ] = 0. H(⌘) is there-
fore always in the DIII symmetry class and has Kramers
pairs of MBSs. We further assume, for simplicity, that
the variation of ⌘ changes the Hamiltonian only at the
right side of the wire. Then, �
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do not vary with
⌘. Thus, everything that follows will only use �
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pair of MBS �⌘ and �̃⌘. This choice is not unique, be-
cause there are linear combinations of �⌘ and �̃⌘ that
also form a Kramers pair of MBSs. Generally, any adi-
abatically time-evolved Majorana operator on the right
end of the wire, �(t), that at t = 0 commuted with the
Hamiltonian, can be expressed as a linear combination of
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Being initially a Majorana operator, it evolves into a Ma-
jorana operator at all later times. For �(t) in Eq. (1) to
be self-adjoint, a and b have to be real. In addition for
�(t) to square to 1, a and b have to satisfy a2 + b2 = 1.
Therefore we parameterize a and b by trigonometric func-
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There is only one free parameter , ', therefore all possible
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ways commutes with the Hamiltonian, which determines
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lows that
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special point, where the Majorana fermions are perfectly lo-
calized. The rectangles correspond to the original electronic
states, and the circles correspond to their decomposition into
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indicate couplings. Our model consists of the indicated end
of the wire with one Kramers pair of Majorana fermions and
one Kramers pair of bulk states. Furthermore it is illustrated
how a local chemical potential and s-wave pairing couple the
Majorana operators in our model. Importantly, the s-wave
pairing couples the two initial Kitaev chains.
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A simple example with non-zero Berry phase can be

constructed from a TRS analog of the 1D Kitaev chain
[15], which is the simplest 1D model that supports Ma-
jorana fermions. Kitaev’s original model consists of spin-
less electrons living on a discrete 1D chain. In sec-
ond quantization the electrons are described by complex
fermionic operators each of which may be decomposed
into two hermitian Majorana operators. In Kitaev’s origi-
nal spinless model at the special point in parameter space
where electron hopping and p-wave pairing amplitude are
equal and the chemical potential is zero, the model dimer-
izes in a way that leaves a perfectly localized MBS at
each end. To construct a time reversal invariant ana-
log, we take two copies of the Kitaev chain with opposite
spin directions and opposite amplitude for p-wave pair-
ing, at the same special point in parameter space. This
is sketched in the top of Fig. 1. Our minimal model in-
cludes then, starting from one end of the wire, exactly
one MBS Kramers pair and one Kramers pair of bulk
states. This is illustrated in Fig. 1. The Hamiltonian for
this system takes the form

H0 =
Eg
2

X
�

i�2a��1b� = Eg
X
�

d†
�

d
�

+ const. (4)

The last expression is obtained by introducing the
more familiar fermionic Bogoliubov quasiparticle oper-
ators d

�

= 1
2 (�2a� + i�1b�).

For the two MBS to mix in a way that preserves TRS,
we need to couple them to the bulk fermionic mode.

3

One coupling we use is a local change of the chemi-
cal potential: H

µ

= µ
P

�

c†1�c1�. This coupling mixes
the end point with the bulk, but does not mix the two
spin directions. We expect that the di↵erent spin direc-
tions need to be coupled, to have mixing of the Kramers
pair. For this purpose we introduce s-wave pairing,
H� = �(c1"c1# + c†1#c

†
1"), on the last site. We write

the new terms in terms of Majorana operators to better
understand which Majoranas couple:

H
µ

=
µ

2

X
�

(i�1a��1b� + 1) , (5a)

H� =
�

2
(i�1a"�1b# + i�1b"�1a#) . (5b)

The full Hamiltonian of our toy model now reads is H =
H0+H

µ

+H� and the couplings are illustrated in Fig. 1.
The new Kramers pair of zero energy Majorana oper-

ators, in the presence of all couplings, is determined by
the conditions [H, �] = 0 and �̃ = T �T �1 . To present
the solutions more compactly, we change parameters:

µ = B cos↵, (6a)

� = B sin↵. (6b)

Here ↵ parametrizes the ratio of bulk coupling between
same spin and opposite spin. Additionally we introduce
tan ✓ = B/Eg, which measures coupling between the ini-
tial Majoranas and the bulk. With this notation, the
results are

�(✓,↵) = cos ✓�1a" + sin ✓ (cos↵�1b" + sin↵�1b#), (7a)

�̃(✓,↵) = cos ✓�1a# � sin ✓ (cos↵�1b# � sin↵�1b"). (7b)

Equation (7) together with (3) is used to calculate the
Berry potential:

A
↵

=
1

2
sin2 ✓. (8a)

A
✓

= 0 (8b)

For a loop in parameter space ↵ : 0 ! 2⇡, one
thus gets the nontrivial contribution ' =

H
A

↵

d↵ =
⇡ sin2 ✓. Moreover, the Berry curvature is given by
⌦

✓↵

= sin ✓ cos ✓, which is non-zero. Note that for small
B, the mixing is proportional to 1/E2

G

. Thus an external
low frequency noise that leads to a fluctuating time de-
pendence of the Hamiltonian would lead to a decoherence
time that grows only algebraically large with E

G

.
For the rest of this letter we will use BdG formalism,

in which an operator is expressed as a four component
spinor, and use the bra and ket notation to denote these
spinors. The usual translation rules from second quan-
tized operators to BdG states imply for Eq. (3) that
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FIG. 2. Berry curvature for the Hamiltonian (9) with m =
1, µ = 10,µ0 = 0, v� = (5, 0, 0)T and � = ↵ = 0 and
the parameters on the x-axis take the corresponding non-zero
values. The inset shows a larger area of the Berry curvature
for the case ↵

x

/v� = 0.2. The unit of length for all plots is
1. The total wire has a length of 40 and x0 is measured from
the middle of the wire.

hence we can deduce that A = h�⌘|r⌘|�̃⌘i = 0, and the
two operators are not mixed by the time evolution of the
Hamiltonian.

We now search for an operator ⇧ for the Hamiltonian
(9) and the corresponding T and P operators. All oper-
ators of the form ⇧l̂ = l̂ · �⌧

z

fulfill the conditions (10b)
and (10c) and commute with the kinetic energy part of

H: ( p

2

2m � µ)⌧
z

. The commutators of ⇧l̂ with the other
terms of the Hamiltonian also have to vanish, which con-
strains the vector l̂. The constraints are

0 = [H↵,⇧l̂] = 2i(↵⇥ l̂) · �, (11a)

0 =
⇥
Hv� ,⇧l̂

⇤
= �ip(v� · l̂)⌧

y

, (11b)

0 = [H�,⇧l̂] = �2i�(l̂ · �)⌧
y

. (11c)

The last constraint can never be met for any non-zero
�. For the case � = 0, we get the conditions ↵ k l̂ ?
v�, which can be fulfilled if ↵ ? v�. This agrees with
our numerical results in Fig. 2, where the only spin-orbit
component generating a non-zero curvature is ↵

x

, which
is parallel to v

x

. Thus, as long as � vanishes and ↵ is
perpendicular to v�, the Kramers pair of MBS are not
mixed.

The strategy we used above for finding ⇧ by first find-
ing the basis for the space of hermitian operators that
fulfill (10b) and (10c) is useful also for more compli-
cated systems. To show how this is done, we consider
next a system where the spinor structure of our Hamilto-
nian is constructed out of tensor products of particle-hole
Pauli matrices ⌧

i

, spin Pauli matrices �
i

and matrices de-
scribing other orbital degrees of freedom denoted by �

i

.
Furthermore, the �

i

-basis is chosen such that the indi-

vidual elements are either fully real or imaginary, and
we denote those matrices with �R

i

and �I

i

accordingly.
From (10b) and (10c) it follows that the basis matrices
have to anti-commute with the chiral symmetry operator
C = iT P = ⌧

y

. Consequently we can choose them to be
proportional to either ⌧

x

or ⌧
z

. With the chiral symme-
try condition fulfilled, we only need to fulfill one other of
the conditions (10b) and (10c), leaving the remaining one
automatically fulfilled. We choose (10c) and in order to
fulfill it our basis matrices have to be either proportional
to �

i

or fully imaginary, i.e. proportional to �I

i

. In total
we have the following allowed basis matrices from which
we can construct candidates for ⇧

�R

i

�
j

⌧
z

, �I

i

⌧
z

, �R

i

�
j

⌧
x

, �I

i

⌧
x

. (12)

As an example we apply the procedure to the case of
two separate spinful wires with intra and inter wire s-
wave paring [10, 11]. In this case, the orbital matrices
�
i

with i = 0 . . . 3 are simply the three Pauli matrices
(index 1 to 3) and the identity matrix (index 0). This
means that there is exactly one �I = �

y

and all other
orbital matrices are real. We analyze a special case of
the Hamiltonian from [11]:

H =

✓
p2

2m
� µ+ t�

x

+ p��
z

�
z

◆
⌧
z

+�3�z

⌧
x

. (13)

T and P are the same as the ones we used earlier. In
this case the only possible symmetry operator is propor-
tional to ⇧ = �

x

�
z

⌧
z

. Note that ⇧ is proportional to
�
x

which means that the two one-dimensional subsys-
tems, into which it decomposes the system, are not the
two physical wires. Also note that the symmetry that
allows the decomposition is easily broken, for example
by �

x

terms in the spin-orbit coupling or in the induced
pairing.
In summary we have shown how local mixing of a

Kramers pair of Majorana fermions generates a trans-
formation on the ground state of a DIII wire. This has
implications for potential qubit applications. We have
shown how adiabatic processes can generate such mixing
and discussed an analytic toy model as well as numerical
results as examples for such processes. Finally we pre-
sented a symmetry condition that guarantees the absence
of mixing.
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correspond to the occupations of the c, c̃ fermions, respec-
tively, its operation yields U |00i = cos '

2 |00i+ sin '

2 |11i.
This shows that a finite 'mixes the fermion parity among
the initial basis choice of time reversed partners.

In an adiabatic process a set of parameters, ⌘, varies
slowly in time. To each parameter value corresponds a
Hamiltonian H(⌘), which we assume to be time rever-
sal symmetric for all ⌘: [H(⌘), T ] = 0. H(⌘) is there-
fore always in the DIII symmetry class and has Kramers
pairs of MBSs. We further assume, for simplicity, that
the variation of ⌘ changes the Hamiltonian only at the
right side of the wire. Then, �

L

and �̃
L

do not vary with
⌘. Thus, everything that follows will only use �

R

and
�̃
R

(and their linear combinations), for which we drop the
subscript R. For each ⌘ we choose a particular Kramers
pair of MBS �⌘ and �̃⌘. This choice is not unique, be-
cause there are linear combinations of �⌘ and �̃⌘ that
also form a Kramers pair of MBSs. Generally, any adi-
abatically time-evolved Majorana operator on the right
end of the wire, �(t), that at t = 0 commuted with the
Hamiltonian, can be expressed as a linear combination of
�⌘ and �̃⌘:

�(t) = a(t)�⌘(t) + b(t)�̃⌘(t). (1)

Being initially a Majorana operator, it evolves into a Ma-
jorana operator at all later times. For �(t) in Eq. (1) to
be self-adjoint, a and b have to be real. In addition for
�(t) to square to 1, a and b have to satisfy a2 + b2 = 1.
Therefore we parameterize a and b by trigonometric func-
tions: a(t) = cos('(t) � '0) and b(t) = sin('(t) � '0).
There is only one free parameter , ', therefore all possible
processes form an Abelian group. Because the operator
�(t) is at zero energy during the adiabatic process it al-
ways commutes with the Hamiltonian, which determines
the time-evolution: d

dt�(t) = i [�(t), H(t)] = 0. It fol-

lows that
�
�(t), d

dt �̃(t)
 

= 0 and explicitly evaluating
this anti-commutator[14] one finds

0 =
�
�(t), d

dt �̃(t)
 

= �2'̇+
�
�⌘(t), ˙̃�⌘(t)

 
. (2)

This gives the important equation '(t) =
1
2

R
t

�
�⌘(t0), ˙̃�⌘(t0)

 
dt0, which can be rewritten to

be independent of time: ' = 1
2

R
W {�⌘,r⌘�̃⌘} d⌘, where

W is the path in parameter space traversed by ⌘(t). If
the path is closed, the result will not depend on our
initial choices of �⌘ and �̃⌘ and we can write the formula
for ' in the standard way for geometrical phases as

' =

I
W

Ad⌘, (3a)

A = 1
2 {�⌘,r⌘�̃⌘} , (3b)

where A is the corresponding Berry potential. By ap-
plying stokes theorem, we can obtain the Berry curvature
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FIG. 1. DIII model built out of two Kitaev chains at the
special point, where the Majorana fermions are perfectly lo-
calized. The rectangles correspond to the original electronic
states, and the circles correspond to their decomposition into
Majorana operators according to c

i�

= 1
2 (�

ia�

+ i�
ib�

). Lines
indicate couplings. Our model consists of the indicated end
of the wire with one Kramers pair of Majorana fermions and
one Kramers pair of bulk states. Furthermore it is illustrated
how a local chemical potential and s-wave pairing couple the
Majorana operators in our model. Importantly, the s-wave
pairing couples the two initial Kitaev chains.

which is independent of our initial choices. Its compo-
nents are given by ⌦

⌘i⌘j = @
⌘iA⌘j � @

⌘jA⌘i .
A simple example with non-zero Berry phase can be

constructed from a TRS analog of the 1D Kitaev chain
[15], which is the simplest 1D model that supports Ma-
jorana fermions. Kitaev’s original model consists of spin-
less electrons living on a discrete 1D chain. In sec-
ond quantization the electrons are described by complex
fermionic operators each of which may be decomposed
into two hermitian Majorana operators. In Kitaev’s origi-
nal spinless model at the special point in parameter space
where electron hopping and p-wave pairing amplitude are
equal and the chemical potential is zero, the model dimer-
izes in a way that leaves a perfectly localized MBS at
each end. To construct a time reversal invariant ana-
log, we take two copies of the Kitaev chain with opposite
spin directions and opposite amplitude for p-wave pair-
ing, at the same special point in parameter space. This
is sketched in the top of Fig. 1. Our minimal model in-
cludes then, starting from one end of the wire, exactly
one MBS Kramers pair and one Kramers pair of bulk
states. This is illustrated in Fig. 1. The Hamiltonian for
this system takes the form

H0 =
Eg
2

X
�

i�2a��1b� = Eg
X
�

d†
�

d
�

+ const. (4)

The last expression is obtained by introducing the
more familiar fermionic Bogoliubov quasiparticle oper-
ators d

�

= 1
2 (�2a� + i�1b�).

For the two MBS to mix in a way that preserves TRS,
we need to couple them to the bulk fermionic mode.
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One coupling we use is a local change of the chemi-
cal potential: H

µ

= µ
P

�

c†1�c1�. This coupling mixes
the end point with the bulk, but does not mix the two
spin directions. We expect that the di↵erent spin direc-
tions need to be coupled, to have mixing of the Kramers
pair. For this purpose we introduce s-wave pairing,
H� = �(c1"c1# + c†1#c

†
1"), on the last site. We write

the new terms in terms of Majorana operators to better
understand which Majoranas couple:

H
µ

=
µ

2

X
�

(i�1a��1b� + 1) , (5a)

H� =
�

2
(i�1a"�1b# + i�1b"�1a#) . (5b)

The full Hamiltonian of our toy model now reads is H =
H0+H

µ

+H� and the couplings are illustrated in Fig. 1.
The new Kramers pair of zero energy Majorana oper-

ators, in the presence of all couplings, is determined by
the conditions [H, �] = 0 and �̃ = T �T �1 . To present
the solutions more compactly, we change parameters:

µ = B cos↵, (6a)

� = B sin↵. (6b)

Here ↵ parametrizes the ratio of bulk coupling between
same spin and opposite spin. Additionally we introduce
tan ✓ = B/Eg, which measures coupling between the ini-
tial Majoranas and the bulk. With this notation, the
results are

�(✓,↵) = cos ✓�1a" + sin ✓ (cos↵�1b" + sin↵�1b#), (7a)

�̃(✓,↵) = cos ✓�1a# � sin ✓ (cos↵�1b# � sin↵�1b"). (7b)

Equation (7) together with (3) is used to calculate the
Berry potential:

A
↵

=
1

2
sin2 ✓. (8a)

A
✓

= 0 (8b)

For a loop in parameter space ↵ : 0 ! 2⇡, one
thus gets the nontrivial contribution ' =

H
A

↵

d↵ =
⇡ sin2 ✓. Moreover, the Berry curvature is given by
⌦

✓↵

= sin ✓ cos ✓, which is non-zero. Note that for small
B, the mixing is proportional to 1/E2

G

. Thus an external
low frequency noise that leads to a fluctuating time de-
pendence of the Hamiltonian would lead to a decoherence
time that grows only algebraically large with E

G

.
For the rest of this letter we will use BdG formalism,

in which an operator is expressed as a four component
spinor, and use the bra and ket notation to denote these
spinors. The usual translation rules from second quan-
tized operators to BdG states imply for Eq. (3) that
A = 1

2 {�⌘,r⌘�̃⌘} = h�⌘|r⌘|�̃⌘i. The factor of 1
2 is

a result of the Majorana states being normalized to 1,
while the operators anti-commute with themselves to 2.

As a second example for mixing we present numerical
calculations of the Berry curvature [16] for a continuous
1D TRS p-wave superconductor. The Hamiltonian then
reads,

H =

✓
p2

2m
� µ(x)

◆
⌧
z

+ p(↵ · �)⌧
z

+ p(v� · �)⌧
x

+�⌧
x

,

(9)
with an associated operator spinor  =
( ", #, 

†
#,� 

†
")

T . The symmetries of this Hamilto-
nian are P = �

y

⌧
y

K and T = i�
y

K, making DIII the
relevant symmetry class. The Hamiltonian describes
a 1D system with p-wave pairing, v�, s-wave pairing,
�, and spin-orbit interaction, ↵. If ↵ = 0, � = 0 and
v� = (v

x

, 0, 0)T , this model is the continuum version of
two Kitaev wires with opposite spin and p-wave pairing.
If ↵ and � are non-zero, the two spin directions mix.
For certain parameter values the Hamiltonian (9) is in

the topological phase. This can then be controlled by
the chemical potential, which means that the Hamilto-
nian will be in the topological phase for µ > µc and in
the trivial phase for µ < µc, where µc is determined
by the other parameters in the Hamiltonian. We in-
troduced a position dependent chemical potential of the
form µ(x) = µ0 +µ tanh(x�x0

w

), that crosses from µ0 �µ
to µ0 + µ around x0. As long as µ

c

is within this in-
terval, there will be a Kramers pair of MBS localized
around x0. We will now study the adiabatic process in-
volving this Kramers pair, where the parameters w and
µ0 change. Note that both parameters enter the chemical
potential which does not couple spin directions. Figure
2 shows how a finite Berry curvature is obtained if the
Hamiltonian contains parameters that mix certain spin
directions. The main plot only shows the Berry curvature
in one point, which is of course not enough to calculate
a Berry phase. The parameter dependence of the Berry
curvature is exemplified in the inset. This shows that
there is a non-zero ⌦ in a whole area.
As the last major part of the paper we show a su�cient

condition for ' = 0. Mixing cannot occur if the system
can be decomposed into two uncoupled one-dimensional
subsystems that are time-reversed partners of one an-
other and this decomposition can be done independently
of ⌘. If such a decomposition exists, it can be described
by a non-singular hermitian operator ⇧. We require the
operator to anti-commute with T , such that ⇧ will take
opposite eigenvalues on the two subsystems. We fur-
ther require it to commute with P, which means that
the MBSs can be chosen as eigenvectors of ⇧.
To formalize, if we find an operator ⇧ that satisfies

[H(⌘),⇧] = 0, (10a)

[P,⇧] = 0, (10b)

{T ,⇧} = 0, (10c)

we can choose ⇧|�⌘i = |�⌘i and ⇧|�̃⌘i = �|�̃⌘i. Then
r⌘|�̃⌘i is also an eigenstate of ⇧ with eigenvalue �1 and
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