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We introduce a new framework for constructing topological quantum memories, by recasting error recovery as
a dynamical process on a cellular automaton. We envisage quantum systems controlled by a classical hardware
composed of small local memories, communicating with neighbors, and repeatedly performing identical simple
update rules. This approach does not require any global operations or complex decoding algorithms. Our cellular
automata draw inspiration from classical field theories, with a Coulomb-like potential naturally emerging from
the local dynamics. For a 3D automaton coupled to a 2D toric code, we present evidence of an error correction
threshold above 6.1% for uncorrelated noise. A 2D automaton equipped with a more complex update rule yields a
threshold above 8.2%. Our framework provides decisive new tools in the quest for realizing a passive dissipative
quantum memory.
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Motivation

Prolonging the lifetime of quantum information is a
necessary first step towards scalable quantum
computing and guantum communication => need
guantum error correction (QEC)

Most promising: topological codes (paradigmatic
example: toric code)

QEC requires to continuously perform syndrome
measurements and a classical decoding algorithm

The decoding process needs to be much quicker than
the decoherence time

QEC typically requires rapid communication between
many spatially separated (classical) cores



Their idea

Perform QEC by means of a cellular
automaton decoder

Cellular automaton: network of cells with local
update rules

Rich dynamics, Turing complete (e.g. Game of
Life)

Mediate long-range attractions between
excitations (“gravitational field”)



Active error correction:

Continuously extract syndrome
information from the code

Use a classical algorithm to
decode it (non-local information
processing necessary)

Undo the errors

Passive error correction:

Couple to topological code to an
auxiliary (quantum) system

This coupling “protects” the
topological code

No classical computation or
active correction necessary

Cellular automaton decoder:
* Onlysimple, local, classical update rules necessary

* disputed



Toric code, error strings, anyons

Figure borrowed from:
Chesi, Roethlisberger, and Loss,
PRA 2010




Active error correction

* Consider a code of size LxL and iid X-errors
with probability p
* There is a threshold error rate p.=10.3% such

that

— For p<p_ an efficient classical decoder can decode
the syndrome (= anyon locations) such that the
failure probability is exponentially small in L

— For p>p,, the chances of successful decoding
approach % for large L



lllustration of code and automata

2D automaton 3D automaton



The automaton

* Interplay between two fields g g (X) (anyonic
charge, =0,1) and ¢ (X) (field stored in the
automaton, 2D or 3D)

* Time-discrete, local update rules for both
fields
* |dea: As in gravitation/electrostatics, the field

¢ (X) mediates Coulombic attractions

between anyons



Poisson’s law

D
d2<p(x —logr for D = 2,
ViO(x) =) 13 d(x) = {7‘2D

J=1

otherwise,

—> Goal: approximate via cellular automaton

Discretized Laplacian: V2¢(X) = —2D¢(x) + Z o(y)

(y,x)



Update rules for fields

—>Specify dynamical equations (automata
update rules) whose stationary solutions
satisfy the discretized Poisson equation

be1(%) = (1 —mge(x) + 5= > dely) +qp(x)

0 < 1 < 1/2 is a smoothing parameter



Convergence

For fixed anyonic charges qg, the field converges

exponentially towards stationary solutions of the
Poisson equation:

A

|61 — doollz < eI IGg — oo 2

* Tilde: Field is rescaled such that overall sum vanishes
(irrelevant, since only gradient matters)
* Convergence takes L? time: diffusive spreading of information

 However: spread over log(L) distance (maximal error cluster
size) suffices



Update rules for anyons

» After c rounds of of updates of the field ¢¢(X)
perform one update of the anyon locations

(c is the “field velocity”)

* Each anyon moves with probability 7 to the
(unique) neighboring cell with largest field

value
* Repeat until there are no anyons left



Pseudocode of algorithm

Repeat c times:
Parallel for all £ € A:

6(6) = avg (€ +a(8)
Parallel for all )é € V:

Ifq(x) # O:
With probability 0.5:

Move anyon from x to arg max ¢(y)
(¥,x)
If still anyons present:
T=7++1
Go to beginning
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d) red: anyons; orange: actual errors; blue: recovery paths dictated by the decoder



Result for 2D field (p=6%)
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Field velocity ¢
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No threshold found
Failure rate > p for all
parameters!

“While the 2D
decoder is expected
to be most suitable
for modest storage
needs, no strict
asymptotic threshold
exists” ?7?



Anyon update

Anyon update
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The field velocity can’t be constant

* Below percolation, typical clusters of errors/anyons are of size
log(L)

 =>The field needs to propagate a distance log(L) for the
decoder to converge in a time which is sub-exponential in L

* =>Lower bound on the field velocity: ¢ > Cpip ~ 10g2 (L)

“If c were to be taken independent of L, then beyond a critical
cluster size, the field contribution due to an anyon’s self-
interaction would dominate the contribution from the anyons
at the other end of the cluster, hence causing persistent
flickering of the anyons and preventing the decoder from
converging in a reasonable time.”



Further difficulties in 2D

We want update rules to be time-independent
Seems not possible in 2D

“From numerical simulations, we are lead to conclude that
the 2D equilibrium field is too long range, and tends to
break the cluster structure of the anyons by extending
error strings rather than shrinking them. In higher
dimensions the field profile decays steeply enough so that
this is not the case.”

(Generalizability to continuous error correction?)



Improved field dynamics

2D 2D* 3D
Lattice (A) L x L L x L LxLxL
Field velocity (c) Tindep. 14+02-7 10-log*(L)
Threshold (pw) N/A 8.2% 6.1 %

Required sequences (7rr) N/A  o(log®®(L))  o(log(L))

T refers to the sequence index, where each sequence contains ¢ + 1
elementary updates per cell. The decoder terminates after 7T sequences on
average. For the 2D* decoder the rules for the field updates can be thought of
as time dependent since c increases with 7. The smoothing parameter as
defined in Eq. (4)isn = 1/2.



Decoder fail rate

Thresholds for improved automata

0.5

I
»

g
]

-t
(¥}

0.1

8.1 % 8.2% 8.3%
Physical error rate p

8.4 %

8%

] | I I I | I 1 I | ] I ] ] ] I I I I | I i b 0.5
- Systemsize L " ]
- 500 2D -
[ 400 - - ﬂ) 04
B 300 W e NN H
[ 200 senun gl ©
T 100 = o =
- o - 803
S, « St ,1--"0— | -
R o i 4 QO
. ‘s 1 O
: 1 8
— \ - @ 0.2
B - Y T Q
PO i
Exponential suppression??, .
L 1 1 L I. L 1 1 1 I 1 1 1 1 J. 1 1 L L I |

I r rr [ rrr1 —r r [ 1111
L " Fy
- System size L -
- 125 RS
[— 100 - - - - 3D 'f' ‘O‘b_‘
B ?5 - EE N ‘,’."‘ “‘O‘h
: 50 AR RARARRNY] 'q.. ““““““ :
L 25 T “:QO ‘‘‘‘‘ #‘p‘:
— #ﬁ“. 111 8 ull"""'.1 -
L *: ~~~ e . -
- “‘:""1’ -
= " -
: 0 —
:0-1:::\“":; ‘:‘ _'_
L '\;l'f‘ -
"R ;
- -
[ I 1 1 1 1 I 1 1 1 L l 1 1 L 1 I 1 1 1 1 l ]
5.8 % 6 % 6.2 % 6.4 % 6.6 %

Physical error rate p

Again: Decoder fail rate is > p for all data points presented



Required number of iterations

Required sequences TrT &
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10 log?(L) updates each
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Large-c regime

* |nvestigate the case where the fields are
always given by their stationary values (not a
cellular automaton) with the field of an anyon

at the origin given by (I)(’r’) — @

* The gradient is proportional to 7"_(0‘"'_1) ,
so for large L the gradient produced by all
other anyons in the code is only finite for

a>1



Large-c regime (p=5%)
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Note: (y — 1
corresponds to the
harmonic field
produced by the 3D
automaton

“We highlight that very
high values of a are not
favorable in general,
since they require
increased precision in
the field resolution.”
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Very similar to 3D automaton
= ¢ = 10 log?(L) sufficient for
good equilibration of the field



Conclusions

They have introduced a new class of decoders: pair anyonic
excitations by mediating long range information through an
auxiliary field.

The decoder has an intrinsically parallelized architecture.

A threshold is obtained for a 3D decoder with time-
homogeneous update rules and for a 2D decoder with
time-dependent update rules.

Note by AH: Whether the standard decoder (MWPM) can
be performed in a strictly local way or requires O(log L)
communication length is under dispute.

Main drawbacks: field velocity and required numerical
resolution scale (poly-)logarithmically with L. O(1)
requirements seem in principle achievable.

To Do: correlated noise, syndrome measurement errors.



