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Motivation 

• Prolonging the lifetime of quantum information is a 
necessary first step towards scalable quantum 
computing and quantum communication => need 
quantum error correction (QEC) 

• Most promising: topological codes (paradigmatic 
example: toric code) 

• QEC requires to continuously perform syndrome 
measurements and a classical decoding algorithm 

• The decoding process needs to be much quicker than 
the decoherence time 

• QEC typically requires rapid communication between 
many spatially separated (classical) cores 



Their idea 

• Perform QEC by means of a cellular 

automaton decoder 

• Cellular automaton: network of cells with local 

update rules 

• Rich dynamics, Turing complete (e.g. Game of 

Life) 

• Mediate long-range attractions between 

eǆĐitatioŶs ;͞graǀitatioŶal field͟Ϳ 



Active error correction: 

• Continuously extract syndrome 

information from the code 

• Use a classical algorithm to 

decode it (non-local information 

processing necessary)  

• Undo the errors 

Passive error correction: 

• Couple to topological code to an 

auxiliary (quantum) system 

• This ĐoupliŶg ͞proteĐts͟ the 
topological code 

• No classical computation or 

active correction necessary 

Cellular automaton decoder: 

• Only simple, local, classical update rules necessary 

* 

* disputed 



Toric code, error strings, anyons 

Figure borrowed from: 

Chesi, Roethlisberger, and Loss, 

PRA 2010 



Active error correction 

• Consider a code of size LxL and iid X-errors 

with probability p 

• There is a threshold error rate pc=10.3% such 

that 

– For p<pc an efficient classical decoder can decode 

the syndrome (= anyon locations) such that the 

failure probability is exponentially small in L 

– For p>pc, the chances of successful decoding 

approach ½ for large L 



Illustration of code and automata 

2D automaton 3D automaton 



The automaton 

• Interplay between two fields                (anyonic 

charge, =0,1) and               (field stored in the 

automaton, 2D or 3D)  

• Time-discrete, local update rules for both 

fields   

• Idea: As in gravitation/electrostatics, the field      

             mediates Coulombic attractions      

   between anyons       



PoissoŶ’s laǁ 

Goal: approximate via cellular automaton 

 

Discretized Laplacian: 



Update rules for fields 

Specify dynamical equations (automata 

update rules) whose stationary solutions 

satisfy the discretized Poisson equation 

 

 



Convergence 

For fixed anyonic charges qE, the field converges 

exponentially towards stationary solutions of the 

Poisson equation: 

• Tilde: Field is rescaled such that overall sum vanishes 

(irrelevant, since only gradient matters) 

• Convergence takes L2 time: diffusive spreading of information 

• However: spread over log(L) distance (maximal error cluster 

size) suffices 



Update rules for anyons 

• After c rounds of of updates of the field                     

    perform one update of the anyon locations  

    (c is the ͞field ǀeloĐitǇ͟Ϳ 
• Each anyon moves with probability ½ to the 

(unique) neighboring cell with largest field 

value 

• Repeat until there are no anyons left 



Pseudocode of algorithm 



d) red: anyons; orange: actual errors; blue: recovery paths dictated by the decoder 



Result for 2D field (p=6%) 

No threshold found. 

Failure rate > p for all 

parameters! 

Field too long-ranged 

Self-interaction too 

strong (see later) 

͞“ǁeet spot͟ 



Result for 2D field (p=6%) 

No threshold found 

Failure rate > p for all 

parameters! 

͞While the ϮD 
decoder is expected 

to be most suitable 

for modest storage 

needs, no strict 

asymptotic threshold 

eǆists͟ ?? 
 



Self-interaction 



The field ǀeloĐitǇ ĐaŶ’t ďe ĐoŶstaŶt 

• Below percolation, typical clusters of errors/anyons are of size 

log(L) 

• => The field needs to propagate a distance log(L) for the 

decoder to converge in a time which is sub-exponential in L 

• => Lower bound on the field velocity: 

 
͞If c were to be taken independent of L, then beyond a critical 

cluster size, the field contribution due to an aŶǇoŶ’s self-

interaction would dominate the contribution from the anyons 

at the other end of the cluster, hence causing persistent 

flickering of the anyons and preventing the decoder from 

converging in a reasonable time.͟  



Further difficulties in 2D 

• We want update rules to be time-independent 

• Seems not possible in 2D 

• ͞Froŵ ŶuŵeriĐal siŵulatioŶs, ǁe are lead to ĐoŶĐlude that 
the 2D equilibrium field is too long range, and tends to 

break the cluster structure of the anyons by extending 

error strings rather than shrinking them. In higher 

dimensions the field profile decays steeply enough so that 

this is Ŷot the Đase.͟  

 

• (Generalizability to continuous error correction?) 



Improved field dynamics 



Thresholds for improved automata 

Again: Decoder fail rate is > p for all data points presented 

2D* 3D 

Exponential suppression?? 



Required number of iterations  

p=1% 

log(L) 

Log2.5(L) 

10 log2(L) updates each 



Large-c regime 

• Investigate the case where the fields are 

always given by their stationary values (not a 

cellular automaton) with the field of an anyon 

at the origin given by 

 

• The gradient is proportional to                       , 

so for large L the gradient produced by all 

other anyons in the code is only finite for 

                    



Large-c regime (p=5%) 

< p  

Note:              

corresponds to the 

harmonic field 

produced by the 3D 

automaton  

͞We highlight that very 

high ǀalues of α are Ŷot 
favorable in general, 

since they require 

increased precision in 

the field resolutioŶ.͟  



Failure rates for α=ϭ  

Very similar to 3D automaton 

 c = 10 log2(L) sufficient for  

good equilibration of the field   



Conclusions 

• They have introduced a new class of decoders: pair anyonic 
excitations by mediating long range information through an 
auxiliary field. 

• The decoder has an intrinsically parallelized architecture. 

• A threshold is obtained for a 3D decoder with time-
homogeneous update rules and for a 2D decoder with 
time-dependent update rules. 

• Note by AH: Whether the standard decoder (MWPM) can 
be performed in a strictly local way or requires O(log L) 
communication length is under dispute. 

• Main drawbacks: field velocity and required numerical 
resolution scale (poly-)logarithmically with L. O(1) 
requirements seem in principle achievable. 

• To Do: correlated noise, syndrome measurement errors. 


