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Motivated by the commonplace observation of Mott insulators away from integer filling, we con-
struct a simple thermodynamic argument for phase separation in first-order doping-driven Mott
transitions. We show how to compute the critical dopings required to drive the Mott transition
using electronic structure calculations for the titanate family of perovskites, finding good agreement
with experiment. The theory predicts the transition is percolative and should exhibit Coulomb
frustration.

The Mott transition is a pervasive and complex phe-
nomena, observed in many correlated oxide systems [1].
It comes in two varieties: the bandwidth-controlled tran-
sition at half-filling, tuned by the ratio of the on-site
Coulomb repulsion U and band-width W , and the filling-
controlled transition, tuned by electron doping x away
from half-filling. Theoretically, Mott insulators exist only
at half-filling: with one electron per site, hoppings neces-
sarily create empty and doubly-occupied sites which are
heavily penalized by U . Introducing a finite charge den-
sity allows carriers to move without incurring the on-site
Coulomb cost, destroying the Mott insulator [2]. How-
ever, experiments in a wide variety of transition metal
oxides show that the critical doping x

c

needed to de-
stroy insulating transport is not zero, but rather a sub-
statial fraction of unity [3], ranging from 0.1 in the nicke-
lates [4] to 0.5 in the vanadates [5]. Systematic variations
of x

c

with bandwidth also argue that it is an intrinsic
quantity[6], and motivate the search for mechanisms in-
dependent of disorder or coupling to lattice vibrations for
insulating behavior away from half-filling.

The scenario of doping a Mott insulator has been
heavily studied by a variety of techniques [7–10]. For
the classic case of a square lattice, basic issues such
as whether the Mott transition is first [11, 12] or sec-
ond [13–15] order, the specific parameter regimes and
underlying mechanisms of phase separation [16–20], and
the structure of the inhomogeneous phases [21–23] have
been actively researched, with results dependant on the
precise model considered. We take a di↵erent approach:
we assume the bandwidth-controlled Mott transition is
first-order and deduce its implications by constructing
a simple thermodynamic description. We predict that
the filling-controlled transition is first order as a conse-
quence, implying that phase separation occurs and the
critical doping scales as x

c

⇠
p
U � Uc, where Uc defines

the critical U for the bandwidth controlled transition.
We show how to compute x

c

in electronic structure cal-
culations [24], using the rare earth titanates [25, 26] as a
protypical example.

Thermodynamics – We construct a theory of the Mott
transition by connecting the bandwidth- and filling-
controlled transitions. By assuming the former transition
is first-order (which covers the majority of cases observed

FIG. 1. The phase diagram for the Mott transition, plotted as
a function of interaction strength U and chemical potential µ.
The energy vs. µ curve at constant U exhibits level crossings
between the metallic and insulating states. The discontinu-
ity in the derivative x = �@✏/@µ implies thermodynamically
forbidden densities where the system will phase separate into
undoped x = 0 and critically-doped x = xc patches.

in experiment), we can explicitly write down the energy
densities ✏ = E/V for the metallic and insulating states,
since the two states must independently exist over a finite
parameter range and cross at the first-order transition.
We determine the phase boundary of the Mott transition
in the µ-U plane (µ is chemical potential) and compute
the scaling of the critical doping x

c

with U .
Consider a one-band Hubbard model on generic lat-

tice. The µ-U phase diagram generically consists of two
regions: a Mott insulator occupying a finite range in µ at
su�ciently large U > U

c

, and a Fermi liquid (actually a
superconductor or any other compressible phase includ-
ing a possible non-Fermi liquid will su�ce for the argu-
ment) everywhere else (Fig. 1). Expanding the grand-
canonical energy densities of the metal and insulator to
lowest order about the bandwidth-controlled transition
point (dot in labeled U

c

in Fig. 1), we obtain:

✏

m

(µ,U) = ✏

0

+ d

m

�U � 1

2
(�µ)2 (1)

✏

i

(µ,U) = ✏

0

+ d

i

�U. (2)

Here,  = @x/@µ is the electronic compressibility, where
the doping x = n�1 is defined relative to half-filling, and
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FIG. 2. Generic Mott phase diagram for a 3D system plotted
in the U -vs-x plane. Beginning at the pure Mott insulat-
ing state at zero doping x = 0, we progress through three
phase-separated states (shaded) to arrive at a uniform Fermi
liquid. The three phase-separated states have distinct mag-
netic (AF or PM) and transport (M or I) signatures. Since
the percolation threshold �

3D
c ⇠ 1/3, we expect an interme-

diate phase (AF-M, bolded text) where metallic conductivity
coexists with magnetic order. This intermediate phase is ab-
sent in 2D since �

2D
c ⇠ 1/2, so the metal and insulator are

never simultaneously percolated.

d

m

and d

i

are the per-site double-occupancies hni"ni#i in
the metallic and insulating states. The chemical poten-
tial �µ = µ�µn=1

and Coulomb repulsion �U = U�U

c

are measured relative to the bandwidth-controlled tran-
sition point.

Equating the two energies, we obtain the Mott phase
boundary,

�U =
�µ

2

2



d

m

� d

i

. (3)

The quadratic dependence U ⇠ µ

2 is observed within
DMFT [14]. Evaluating the metallic density x = �@✏/@µ

along the phase boundary, we obtain the critical doping

x

c

=
p

�U · 2(d
m

� d

i

). (4)

Similar to the liquid-gas transition, thermodynamics for-
bids charge densities lying in the range 0 < |x| < x

c

.
The system will phase separate if doped to lie within
this regime [20].

We note that the filling-controlled transition is not
doping in the conventional sense, where the insulator is
connected to a metal formed by shifting µ into the bands
lying adjacent to the spectral gap. Indeed the small-
ness of �µ for small �U implied by Eq. (3) dictates
that the first order transition occurs without the clos-
ing of the single-particle gap, when �U is small. Rather,
the Mott insulator transitions to a disconnected, lower-
energy, metallic state [11].

Phase separation – Thermodynamics forbids charge
densities in the range 0 < |x| < x

c

, causing the system
to phase separate into insulating regions with x = 0 and

FIG. 3. Density of states for end members LaTiO3 and YTiO3

of theRTiO3 series computed using DFT+DMFT. The reduc-
tion of bandwidth in YTiO3 enhances the relative strength of
correlations and produces a larger spectral gap. We empha-
size that a single set of Coulomb parameters were used for
both simulations, and the di↵erences are driven purely by
chemistry.

metallic regions with x = x

c

(shaded region in Fig. 2).
The surface energy E

surface

⇠ �L

d�1, where � > 0 is
the surface tension and L is the characteristic size of
a metallic region, favors forming a single large puddle.
However, the long-ranged part of the Coulomb interac-
tion E

coul

⇠ x

2

c

L

2d�1 penalizes macroscopic charge im-
balances. Balancing the two gives domains of typical size
L ⇠ (�/x2

c

)1/d. The actual spatial patterns formed de-
pend on system-specific details such as dimensionality,
anisotropy, and elastic forces [22].

Conducting transport does not coincide with the dis-
appearance of phase separation at x

c

and the formation
of the homogeneous metallic state, but rather when the
volume fraction x/x

c

⇠ � of the metallic puddles reaches
the percolation limit, roughly �

c

⇠ 1/3 in three dimen-
sions [27]. Depending on the spatial patterns favored, we
may expect anisotropic transport. Additionally, we pre-
dict an intermediate conducting magnetic state (AF-M in
Fig. 2) since long-range order persists as long as the insu-
lating regions percolate, up to doping x/x

c

⇠ 1��

c

. This
intermediate state does not exist in two dimensions since
�

c

⇠ 1/2, implying the metallic and insulating states
never simultaneously percolate.

Ab initio modeling – The rare earth titanates RTiO
3

are an ideal system to investigate the Mott transi-
tion [25, 26]. Varying the ionic radius of the rare earth
R tunes the correlation strength, while rare earth vacan-
cies [28] or Ca substitution [6] tunes the Ti valence from
d

1 to d

0. The interplay between structure, transport and
magnetism are well-characterized. Critical dopings, de-
termined via transport, range from 0.05 in LaTiO

3

to
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Reminder on Mott insulator

• Mott insulator: interaction driven insulator (unlike simple band insulator) 

• Named after Neville Mott (Nobel price in 1977 with Anderson & van Vleck)

At extremely low temperatures of less 
than one-hundred-millionth of a degree
above absolute zero (10 nanokelvin),

the atoms in a rubidium gas essentially all 
join into a single quantum state to form a
Bose–Einstein condensate. In such a con-
densate the atoms can flow without friction,
and so the gas is a superfluid. When this
superfluid is placed in an energy landscape
consisting of high-energy mountains and
low-energy valleys there is initially little
effect (Fig. 1a). In particular, the superfluid
nature of the gas does not change and the
atoms still move freely from one valley to the
next. But when the mountains become just a
little too high the atoms suddenly lose their
freedom, and each atom is trapped in a single
valley (Fig. 1b). This surprising behaviour —
switching a quantum gas from a superfluid
to an insulating phase — has been demon-
strated for the first time by Greiner et al.1, as
they report on page 39 of this issue.

The experiment by Greiner et al.1 repre-
sents a landmark in the history of Bose–
Einstein condensed gases, for several reasons.
The creation of a Bose–Einstein condensed
gas of rubidium atoms in a magnetic trap is
challenging in itself, and the first researchers2

to do so in 1995 were recently rewarded with
the 2001 Nobel prize for physics. Several lab-
oratories around the world can now create
Bose–Einstein condensates almost routinely,
but Greiner et al.1 also needed a periodic
energy landscape for the atoms. This is 
most easily achieved using the electric field
of a laser beam or, more precisely, several
criss-crossing laser beams, which create a
light-wave interference pattern known as an
optical lattice.

Optical lattices have also been around
since the mid-1990s, and a standard three-
dimensional optical lattice is made using
four laser beams, so the resulting lattice is 
less sensitive to instabilities in the lasers. But
Greiner et al.1 used six laser beams to create
an optical lattice with an extra twist. With 
the additional laser beams they can make 
an energy landscape in which the distance
between the valleys (and mountains) in all
three directions is exactly the same — it is 
a perfect cubic lattice. Such experimental
wizardry allows the authors to demonstrate
convincingly the transition of the ultracold
atoms from superfluid to insulating behav-
iour and back again. To confirm the state of
the quantum gas at any instant they simply

switch off the magnetic trap and the optical
lattice, and then take an image of the gas
cloud after it has expanded for 15 milli-
seconds. Only when the gas is a superfluid do
they observe a beautiful interference pattern. 

For a physicist, the observation of this
transition is exciting because it is solely the
result of the Heisenberg uncertainty princi-
ple. Such ‘quantum phase transitions’ have
attracted a lot of attention in recent years,
because they are fundamentally different
from their more familiar ‘classical’ counter-
parts that are driven by thermal rather than
quantum fluctuations. For example, true
quantum phase transitions occur only at a
temperature of absolute zero. So, in princi-
ple, thermal fluctuations will still have a 
pronounced effect on the transition3, even at
temperatures as low as 10 nanokelvin. In the
case of a quantum gas in an optical lattice,
understanding the effect of thermal fluctua-
tions remains an important challenge. In this
respect, theorists are particularly interested
in the speed of sound in the gas near the 
transition point.

In its most familiar form, Heisenberg’s
uncertainty principle says that knowing 
precisely the position of a particle prevents
you knowing precisely its momentum, and
vice versa. What you gain on one hand you
lose on the other.The uncertainty principle at
work in Greiner et al.’s experiment1 forbids
simultaneously knowing the number of
atoms in a certain valley, and the phase of 
the condensate’s ‘wave function’ in that same
valley. Because all the atoms in a Bose–
Einstein condensate occupy a single quantum
state, they are described by a quantum wave
function whose phase is exactly the same in
each valley. As a result, when the gas cloud 
is in the superfluid state the number of atoms
in each valley can vary considerably. In the
insulating phase the situation is reversed: the
number of atoms in each valley is now fixed,
so the phase of the wave function changes
randomly from one valley to the next.

This particular quantum phase transi-
tion was first studied theoretically by Fisher
et al.4 in the context of granular supercon-
ductors and Josephson-junction arrays. It
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Breaking up a superfluid
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Figure 1 A quantum phase transition in an ultracold gas. By using a web of laser beams to create an
energy landscape of mountains and valleys (an optical lattice), Greiner et al.1 can reversibly switch a
gas of rubidium atoms from a superfluid to an insulating phase. a, At a temperature of 10 nanokelvin
or less the rubidium atoms share the same quantum state and are in a superfluid phase, in which they
can move freely between valleys. b, By increasing the intensity of the laser beams in the optical lattice,
the researchers force the gas into an insulating phase, in which each atom is trapped in an individual
valley. Such control is vital to most proposals for building a quantum computer.

a  Superfluid state

b  Insulating state

U ltr a c o ld  a t o m s h e ld  in a  thr e e - d i m e n s io n a l p a tt e rn  b y a  w e b  o f lig ht b e a m s
c a n n o w  b e  s w it c h e d  fro m  a  s u p e rflu id  t o  a n  in s u la tin g  s t a t e . T h is
a c h i e v e m e nt m a y b e  u s e fu l f or p e rf or m in g  q u a ntu m  c o m p ut a tio n s .
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At extremely low temperatures of less 
than one-hundred-millionth of a degree
above absolute zero (10 nanokelvin),

the atoms in a rubidium gas essentially all 
join into a single quantum state to form a
Bose–Einstein condensate. In such a con-
densate the atoms can flow without friction,
and so the gas is a superfluid. When this
superfluid is placed in an energy landscape
consisting of high-energy mountains and
low-energy valleys there is initially little
effect (Fig. 1a). In particular, the superfluid
nature of the gas does not change and the
atoms still move freely from one valley to the
next. But when the mountains become just a
little too high the atoms suddenly lose their
freedom, and each atom is trapped in a single
valley (Fig. 1b). This surprising behaviour —
switching a quantum gas from a superfluid
to an insulating phase — has been demon-
strated for the first time by Greiner et al.1, as
they report on page 39 of this issue.

The experiment by Greiner et al.1 repre-
sents a landmark in the history of Bose–
Einstein condensed gases, for several reasons.
The creation of a Bose–Einstein condensed
gas of rubidium atoms in a magnetic trap is
challenging in itself, and the first researchers2

to do so in 1995 were recently rewarded with
the 2001 Nobel prize for physics. Several lab-
oratories around the world can now create
Bose–Einstein condensates almost routinely,
but Greiner et al.1 also needed a periodic
energy landscape for the atoms. This is 
most easily achieved using the electric field
of a laser beam or, more precisely, several
criss-crossing laser beams, which create a
light-wave interference pattern known as an
optical lattice.

Optical lattices have also been around
since the mid-1990s, and a standard three-
dimensional optical lattice is made using
four laser beams, so the resulting lattice is 
less sensitive to instabilities in the lasers. But
Greiner et al.1 used six laser beams to create
an optical lattice with an extra twist. With 
the additional laser beams they can make 
an energy landscape in which the distance
between the valleys (and mountains) in all
three directions is exactly the same — it is 
a perfect cubic lattice. Such experimental
wizardry allows the authors to demonstrate
convincingly the transition of the ultracold
atoms from superfluid to insulating behav-
iour and back again. To confirm the state of
the quantum gas at any instant they simply

switch off the magnetic trap and the optical
lattice, and then take an image of the gas
cloud after it has expanded for 15 milli-
seconds. Only when the gas is a superfluid do
they observe a beautiful interference pattern. 

For a physicist, the observation of this
transition is exciting because it is solely the
result of the Heisenberg uncertainty princi-
ple. Such ‘quantum phase transitions’ have
attracted a lot of attention in recent years,
because they are fundamentally different
from their more familiar ‘classical’ counter-
parts that are driven by thermal rather than
quantum fluctuations. For example, true
quantum phase transitions occur only at a
temperature of absolute zero. So, in princi-
ple, thermal fluctuations will still have a 
pronounced effect on the transition3, even at
temperatures as low as 10 nanokelvin. In the
case of a quantum gas in an optical lattice,
understanding the effect of thermal fluctua-
tions remains an important challenge. In this
respect, theorists are particularly interested
in the speed of sound in the gas near the 
transition point.

In its most familiar form, Heisenberg’s
uncertainty principle says that knowing 
precisely the position of a particle prevents
you knowing precisely its momentum, and
vice versa. What you gain on one hand you
lose on the other.The uncertainty principle at
work in Greiner et al.’s experiment1 forbids
simultaneously knowing the number of
atoms in a certain valley, and the phase of 
the condensate’s ‘wave function’ in that same
valley. Because all the atoms in a Bose–
Einstein condensate occupy a single quantum
state, they are described by a quantum wave
function whose phase is exactly the same in
each valley. As a result, when the gas cloud 
is in the superfluid state the number of atoms
in each valley can vary considerably. In the
insulating phase the situation is reversed: the
number of atoms in each valley is now fixed,
so the phase of the wave function changes
randomly from one valley to the next.

This particular quantum phase transi-
tion was first studied theoretically by Fisher
et al.4 in the context of granular supercon-
ductors and Josephson-junction arrays. It
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Figure 1 A quantum phase transition in an ultracold gas. By using a web of laser beams to create an
energy landscape of mountains and valleys (an optical lattice), Greiner et al.1 can reversibly switch a
gas of rubidium atoms from a superfluid to an insulating phase. a, At a temperature of 10 nanokelvin
or less the rubidium atoms share the same quantum state and are in a superfluid phase, in which they
can move freely between valleys. b, By increasing the intensity of the laser beams in the optical lattice,
the researchers force the gas into an insulating phase, in which each atom is trapped in an individual
valley. Such control is vital to most proposals for building a quantum computer.

a  Superfluid state

b  Insulating state
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Motivation

• Theoretically: Mott insulator exists at commensurate fillings only 

!

!

!

!

!

!

• In some experiments: insulating behavior also seen at other fillings!

[T. Giamarchi, Quantum Physics in One Dimension]

YVO4 (weight fraction of ca. 3%; space group I41/a) as an
impurity.

The magnetic susceptibilities of Y0.4Cd0.6VO3 demon-
strated almost temperature-independent Pauli paramag-
netic behavior (except for the low-temperature upturn due
to the paramagnetic impurities or defects) similar to
CdVO3 [5], whereas in Y0.5Cd0.5VO3, a small contribution
of Curie–Weiss-like paramagnetism was found even at
300K. Almost no difference was found between the curves
measured under the ZFC and FC conditions. The
temperature dependence of resistivity of Y0.4Cd0.6VO3

and Y0.5Cd0.5VO3 was very close to each other in the
shape (Fig. 1) and similar to that of Y0.5Ca0.5VO3 [3]. This
behavior of resistivity is somewhat intermediate between
pure metallic-like and pure insulator-like ones. Specific
heat measurements of Y0.4Cd0.6VO3 and Y0.5Cd0.5VO3

clearly showed the electronic contribution at low tempera-
tures (Fig. 2) which is noticeably larger than that of CdVO3

[5]. Such increase of the electronic contribution to the
specific heat was also observed in solid solutions
Y1!xCaxVO3 and La1!xSrxVO3 on approaching the MIT
phase boundary and is attributed to the re-normalization
effect of the effective electron mass in the vicinity of MIT

[2]. The specific heat and magnetic susceptibility data
showed no evidence for phase transitions in Y0.4Cd0.6VO3

and Y0.5Cd0.5VO3.
Y0.6Cd0.4VO3 showed insulator-like resistivity (Fig. 1).

Therefore, MIT occurs between x ¼ 0:5 and 0.4 similar to
the Y1!xCaxVO3 system [3]. The change in the slope of the
w !1 vs T curve was found between 130 and 200K, and the
difference between the ZFC and FC curves was observed
below 35K (Fig. 3). A very broad anomaly between 110
and 180K was detected on the Cp/T vs T curve of
Y0.6Cd0.4VO3, whereas no anomaly was found near 35K.
The anomalies near 150K on magnetic susceptibility and
specific heat in Y0.6Cd0.4VO3 resembled those observed at
200K in YVO3 due to the G-type orbital order transition
[1,4]. However, small doping ðx $ 0:1Þ strongly suppressed
the orbital order transitions in Y1!xCaxVO3 [1]. Therefore,
the origin of the observed phase transition at 150K in
Y0.6Cd0.4VO3 still needs to be clarified. This kind of the
phase transition was never detected in Y1!xCaxVO3.
The magnetic susceptibilities of Y1!xCdxVO3

(x ¼ 0:1–0.3) showed Curie–Weiss behavior at high tem-
peratures (e.g., meff ¼ 2:68 mB and y ¼ !176K for x ¼ 0:2)
with a sharp ferromagnetic-like upturn below 100K, whose
temperature decreased with increasing x. The temperature
dependence of resistivity of the samples with x ¼ 0:1–0.3 is
typically insulator-like one (Fig. 1). The Cp/T vs T curves
approach to the origin at very low temperatures indicating
the absence of the electronic contribution ðg $ 0Þ to the
specific heat (Fig. 2). No anomalies were detected on the Cp

vs T curves even for x ¼ 0:1. The same results were
observed in Y1!xCaxVO3 [1], where no anomalies were
found on the specific heat for xX0.11, whereas magnetic
susceptibilities showed that the C-type spin order of YVO3

still exists in solid solutions Y1!xCaxVO3 up to x ¼ 0:6 [1].
Nevertheless, the influence of impurities on the ferromag-
netic response of Y1!xCdxVO3 (x ¼ 0:1–0.3) should not be
excluded.
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Fig. 1. Temperature dependence of resistivity in Y1!xCdxVO3. The inset
shows the data for x ¼ 0:5.
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Simple thermodynamic theory

• Analyze energy densities of metallic and insulating state close to    Uc
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Motivated by the commonplace observation of Mott insulators away from integer filling, we con-
struct a simple thermodynamic argument for phase separation in first-order doping-driven Mott
transitions. We show how to compute the critical dopings required to drive the Mott transition
using electronic structure calculations for the titanate family of perovskites, finding good agreement
with experiment. The theory predicts the transition is percolative and should exhibit Coulomb
frustration.

The Mott transition is a pervasive and complex phe-
nomena, observed in many correlated oxide systems [1].
It comes in two varieties: the bandwidth-controlled tran-
sition at half-filling, tuned by the ratio of the on-site
Coulomb repulsion U and band-width W , and the filling-
controlled transition, tuned by electron doping x away
from half-filling. Theoretically, Mott insulators exist only
at half-filling: with one electron per site, hoppings neces-
sarily create empty and doubly-occupied sites which are
heavily penalized by U . Introducing a finite charge den-
sity allows carriers to move without incurring the on-site
Coulomb cost, destroying the Mott insulator [2]. How-
ever, experiments in a wide variety of transition metal
oxides show that the critical doping x

c

needed to de-
stroy insulating transport is not zero, but rather a sub-
statial fraction of unity [3], ranging from 0.1 in the nicke-
lates [4] to 0.5 in the vanadates [5]. Systematic variations
of x

c

with bandwidth also argue that it is an intrinsic
quantity[6], and motivate the search for mechanisms in-
dependent of disorder or coupling to lattice vibrations for
insulating behavior away from half-filling.

The scenario of doping a Mott insulator has been
heavily studied by a variety of techniques [7–10]. For
the classic case of a square lattice, basic issues such
as whether the Mott transition is first [11, 12] or sec-
ond [13–15] order, the specific parameter regimes and
underlying mechanisms of phase separation [16–20], and
the structure of the inhomogeneous phases [21–23] have
been actively researched, with results dependant on the
precise model considered. We take a di↵erent approach:
we assume the bandwidth-controlled Mott transition is
first-order and deduce its implications by constructing
a simple thermodynamic description. We predict that
the filling-controlled transition is first order as a conse-
quence, implying that phase separation occurs and the
critical doping scales as x

c

⇠
p
U � Uc, where Uc defines

the critical U for the bandwidth controlled transition.
We show how to compute x

c

in electronic structure cal-
culations [24], using the rare earth titanates [25, 26] as a
protypical example.

Thermodynamics – We construct a theory of the Mott
transition by connecting the bandwidth- and filling-
controlled transitions. By assuming the former transition
is first-order (which covers the majority of cases observed
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FIG. 1. The phase diagram for the Mott transition, plotted as
a function of interaction strength U and chemical potential µ.
The energy vs. µ curve at constant U exhibits level crossings
between the metallic and insulating states. The discontinu-
ity in the derivative x = �@✏/@µ implies thermodynamically
forbidden densities where the system will phase separate into
undoped x = 0 and critically-doped x = xc patches.

in experiment), we can explicitly write down the energy
densities ✏ = E/V for the metallic and insulating states,
since the two states must independently exist over a finite
parameter range and cross at the first-order transition.
We determine the phase boundary of the Mott transition
in the µ-U plane (µ is chemical potential) and compute
the scaling of the critical doping x

c

with U .
Consider a one-band Hubbard model on generic lat-

tice. The µ-U phase diagram generically consists of two
regions: a Mott insulator occupying a finite range in µ at
su�ciently large U > U

c

, and a Fermi liquid (actually a
superconductor or any other compressible phase includ-
ing a possible non-Fermi liquid will su�ce for the argu-
ment) everywhere else (Fig. 1). Expanding the grand-
canonical energy densities of the metal and insulator to
lowest order about the bandwidth-controlled transition
point (dot in labeled U

c

in Fig. 1), we obtain:

✏
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Here,  = @x/@µ is the electronic compressibility, where
the doping x = n�1 is defined relative to half-filling, and
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Motivated by the commonplace observation of Mott insulators away from integer filling, we con-
struct a simple thermodynamic argument for phase separation in first-order doping-driven Mott
transitions. We show how to compute the critical dopings required to drive the Mott transition
using electronic structure calculations for the titanate family of perovskites, finding good agreement
with experiment. The theory predicts the transition is percolative and should exhibit Coulomb
frustration.

The Mott transition is a pervasive and complex phe-
nomena, observed in many correlated oxide systems [1].
It comes in two varieties: the bandwidth-controlled tran-
sition at half-filling, tuned by the ratio of the on-site
Coulomb repulsion U and band-width W , and the filling-
controlled transition, tuned by electron doping x away
from half-filling. Theoretically, Mott insulators exist only
at half-filling: with one electron per site, hoppings neces-
sarily create empty and doubly-occupied sites which are
heavily penalized by U . Introducing a finite charge den-
sity allows carriers to move without incurring the on-site
Coulomb cost, destroying the Mott insulator [2]. How-
ever, experiments in a wide variety of transition metal
oxides show that the critical doping x

c

needed to de-
stroy insulating transport is not zero, but rather a sub-
statial fraction of unity [3], ranging from 0.1 in the nicke-
lates [4] to 0.5 in the vanadates [5]. Systematic variations
of x

c

with bandwidth also argue that it is an intrinsic
quantity[6], and motivate the search for mechanisms in-
dependent of disorder or coupling to lattice vibrations for
insulating behavior away from half-filling.

The scenario of doping a Mott insulator has been
heavily studied by a variety of techniques [7–10]. For
the classic case of a square lattice, basic issues such
as whether the Mott transition is first [11, 12] or sec-
ond [13–15] order, the specific parameter regimes and
underlying mechanisms of phase separation [16–20], and
the structure of the inhomogeneous phases [21–23] have
been actively researched, with results dependant on the
precise model considered. We take a di↵erent approach:
we assume the bandwidth-controlled Mott transition is
first-order and deduce its implications by constructing
a simple thermodynamic description. We predict that
the filling-controlled transition is first order as a conse-
quence, implying that phase separation occurs and the
critical doping scales as x

c

⇠
p
U � Uc, where Uc defines

the critical U for the bandwidth controlled transition.
We show how to compute x

c

in electronic structure cal-
culations [24], using the rare earth titanates [25, 26] as a
protypical example.

Thermodynamics – We construct a theory of the Mott
transition by connecting the bandwidth- and filling-
controlled transitions. By assuming the former transition
is first-order (which covers the majority of cases observed

FIG. 1. The phase diagram for the Mott transition, plotted as
a function of interaction strength U and chemical potential µ.
The energy vs. µ curve at constant U exhibits level crossings
between the metallic and insulating states. The discontinu-
ity in the derivative x = �@✏/@µ implies thermodynamically
forbidden densities where the system will phase separate into
undoped x = 0 and critically-doped x = xc patches.

in experiment), we can explicitly write down the energy
densities ✏ = E/V for the metallic and insulating states,
since the two states must independently exist over a finite
parameter range and cross at the first-order transition.
We determine the phase boundary of the Mott transition
in the µ-U plane (µ is chemical potential) and compute
the scaling of the critical doping x

c

with U .
Consider a one-band Hubbard model on generic lat-

tice. The µ-U phase diagram generically consists of two
regions: a Mott insulator occupying a finite range in µ at
su�ciently large U > U

c

, and a Fermi liquid (actually a
superconductor or any other compressible phase includ-
ing a possible non-Fermi liquid will su�ce for the argu-
ment) everywhere else (Fig. 1). Expanding the grand-
canonical energy densities of the metal and insulator to
lowest order about the bandwidth-controlled transition
point (dot in labeled U

c

in Fig. 1), we obtain:
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Here,  = @x/@µ is the electronic compressibility, where
the doping x = n�1 is defined relative to half-filling, and
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• double occupancy per site in metal/insulator: 
!
!
• electron compressibility: 
!
!
• Doping relative to half filling:

dm,i

 =
@x

@µ

x = n� 1

�U = U � Uc �µ = µ� µn=1

= hni"ni#i
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struct a simple thermodynamic argument for phase separation in first-order doping-driven Mott
transitions. We show how to compute the critical dopings required to drive the Mott transition
using electronic structure calculations for the titanate family of perovskites, finding good agreement
with experiment. The theory predicts the transition is percolative and should exhibit Coulomb
frustration.

The Mott transition is a pervasive and complex phe-
nomena, observed in many correlated oxide systems [1].
It comes in two varieties: the bandwidth-controlled tran-
sition at half-filling, tuned by the ratio of the on-site
Coulomb repulsion U and band-width W , and the filling-
controlled transition, tuned by electron doping x away
from half-filling. Theoretically, Mott insulators exist only
at half-filling: with one electron per site, hoppings neces-
sarily create empty and doubly-occupied sites which are
heavily penalized by U . Introducing a finite charge den-
sity allows carriers to move without incurring the on-site
Coulomb cost, destroying the Mott insulator [2]. How-
ever, experiments in a wide variety of transition metal
oxides show that the critical doping x

c

needed to de-
stroy insulating transport is not zero, but rather a sub-
statial fraction of unity [3], ranging from 0.1 in the nicke-
lates [4] to 0.5 in the vanadates [5]. Systematic variations
of x

c

with bandwidth also argue that it is an intrinsic
quantity[6], and motivate the search for mechanisms in-
dependent of disorder or coupling to lattice vibrations for
insulating behavior away from half-filling.

The scenario of doping a Mott insulator has been
heavily studied by a variety of techniques [7–10]. For
the classic case of a square lattice, basic issues such
as whether the Mott transition is first [11, 12] or sec-
ond [13–15] order, the specific parameter regimes and
underlying mechanisms of phase separation [16–20], and
the structure of the inhomogeneous phases [21–23] have
been actively researched, with results dependant on the
precise model considered. We take a di↵erent approach:
we assume the bandwidth-controlled Mott transition is
first-order and deduce its implications by constructing
a simple thermodynamic description. We predict that
the filling-controlled transition is first order as a conse-
quence, implying that phase separation occurs and the
critical doping scales as x

c

⇠
p
U � Uc, where Uc defines

the critical U for the bandwidth controlled transition.
We show how to compute x

c

in electronic structure cal-
culations [24], using the rare earth titanates [25, 26] as a
protypical example.

Thermodynamics – We construct a theory of the Mott
transition by connecting the bandwidth- and filling-
controlled transitions. By assuming the former transition
is first-order (which covers the majority of cases observed
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FIG. 1. The phase diagram for the Mott transition, plotted as
a function of interaction strength U and chemical potential µ.
The energy vs. µ curve at constant U exhibits level crossings
between the metallic and insulating states. The discontinu-
ity in the derivative x = �@✏/@µ implies thermodynamically
forbidden densities where the system will phase separate into
undoped x = 0 and critically-doped x = xc patches.

in experiment), we can explicitly write down the energy
densities ✏ = E/V for the metallic and insulating states,
since the two states must independently exist over a finite
parameter range and cross at the first-order transition.
We determine the phase boundary of the Mott transition
in the µ-U plane (µ is chemical potential) and compute
the scaling of the critical doping x

c

with U .
Consider a one-band Hubbard model on generic lat-

tice. The µ-U phase diagram generically consists of two
regions: a Mott insulator occupying a finite range in µ at
su�ciently large U > U

c

, and a Fermi liquid (actually a
superconductor or any other compressible phase includ-
ing a possible non-Fermi liquid will su�ce for the argu-
ment) everywhere else (Fig. 1). Expanding the grand-
canonical energy densities of the metal and insulator to
lowest order about the bandwidth-controlled transition
point (dot in labeled U

c

in Fig. 1), we obtain:

✏
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(µ,U) = ✏

0
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✏
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Here,  = @x/@µ is the electronic compressibility, where
the doping x = n�1 is defined relative to half-filling, and
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Motivated by the commonplace observation of Mott insulators away from integer filling, we con-
struct a simple thermodynamic argument for phase separation in first-order doping-driven Mott
transitions. We show how to compute the critical dopings required to drive the Mott transition
using electronic structure calculations for the titanate family of perovskites, finding good agreement
with experiment. The theory predicts the transition is percolative and should exhibit Coulomb
frustration.

The Mott transition is a pervasive and complex phe-
nomena, observed in many correlated oxide systems [1].
It comes in two varieties: the bandwidth-controlled tran-
sition at half-filling, tuned by the ratio of the on-site
Coulomb repulsion U and band-width W , and the filling-
controlled transition, tuned by electron doping x away
from half-filling. Theoretically, Mott insulators exist only
at half-filling: with one electron per site, hoppings neces-
sarily create empty and doubly-occupied sites which are
heavily penalized by U . Introducing a finite charge den-
sity allows carriers to move without incurring the on-site
Coulomb cost, destroying the Mott insulator [2]. How-
ever, experiments in a wide variety of transition metal
oxides show that the critical doping x

c

needed to de-
stroy insulating transport is not zero, but rather a sub-
statial fraction of unity [3], ranging from 0.1 in the nicke-
lates [4] to 0.5 in the vanadates [5]. Systematic variations
of x

c

with bandwidth also argue that it is an intrinsic
quantity[6], and motivate the search for mechanisms in-
dependent of disorder or coupling to lattice vibrations for
insulating behavior away from half-filling.

The scenario of doping a Mott insulator has been
heavily studied by a variety of techniques [7–10]. For
the classic case of a square lattice, basic issues such
as whether the Mott transition is first [11, 12] or sec-
ond [13–15] order, the specific parameter regimes and
underlying mechanisms of phase separation [16–20], and
the structure of the inhomogeneous phases [21–23] have
been actively researched, with results dependant on the
precise model considered. We take a di↵erent approach:
we assume the bandwidth-controlled Mott transition is
first-order and deduce its implications by constructing
a simple thermodynamic description. We predict that
the filling-controlled transition is first order as a conse-
quence, implying that phase separation occurs and the
critical doping scales as x

c

⇠
p
U � Uc, where Uc defines

the critical U for the bandwidth controlled transition.
We show how to compute x

c

in electronic structure cal-
culations [24], using the rare earth titanates [25, 26] as a
protypical example.

Thermodynamics – We construct a theory of the Mott
transition by connecting the bandwidth- and filling-
controlled transitions. By assuming the former transition
is first-order (which covers the majority of cases observed

FIG. 1. The phase diagram for the Mott transition, plotted as
a function of interaction strength U and chemical potential µ.
The energy vs. µ curve at constant U exhibits level crossings
between the metallic and insulating states. The discontinu-
ity in the derivative x = �@✏/@µ implies thermodynamically
forbidden densities where the system will phase separate into
undoped x = 0 and critically-doped x = xc patches.

in experiment), we can explicitly write down the energy
densities ✏ = E/V for the metallic and insulating states,
since the two states must independently exist over a finite
parameter range and cross at the first-order transition.
We determine the phase boundary of the Mott transition
in the µ-U plane (µ is chemical potential) and compute
the scaling of the critical doping x

c

with U .
Consider a one-band Hubbard model on generic lat-

tice. The µ-U phase diagram generically consists of two
regions: a Mott insulator occupying a finite range in µ at
su�ciently large U > U

c

, and a Fermi liquid (actually a
superconductor or any other compressible phase includ-
ing a possible non-Fermi liquid will su�ce for the argu-
ment) everywhere else (Fig. 1). Expanding the grand-
canonical energy densities of the metal and insulator to
lowest order about the bandwidth-controlled transition
point (dot in labeled U

c

in Fig. 1), we obtain:

✏
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Here,  = @x/@µ is the electronic compressibility, where
the doping x = n�1 is defined relative to half-filling, and
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• Phase boundary at ✏m(µ,U) = ✏i(µ,U)

�U =
�µ2

2



dm � di

(                   consistent with DMFT)�U ⇠ �µ2

[P. Werner and A. J. Millis, PRB 75, 085108 (2007)]

• Analyze energy densities of metallic and insulating state close to    Uc
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struct a simple thermodynamic argument for phase separation in first-order doping-driven Mott
transitions. We show how to compute the critical dopings required to drive the Mott transition
using electronic structure calculations for the titanate family of perovskites, finding good agreement
with experiment. The theory predicts the transition is percolative and should exhibit Coulomb
frustration.

The Mott transition is a pervasive and complex phe-
nomena, observed in many correlated oxide systems [1].
It comes in two varieties: the bandwidth-controlled tran-
sition at half-filling, tuned by the ratio of the on-site
Coulomb repulsion U and band-width W , and the filling-
controlled transition, tuned by electron doping x away
from half-filling. Theoretically, Mott insulators exist only
at half-filling: with one electron per site, hoppings neces-
sarily create empty and doubly-occupied sites which are
heavily penalized by U . Introducing a finite charge den-
sity allows carriers to move without incurring the on-site
Coulomb cost, destroying the Mott insulator [2]. How-
ever, experiments in a wide variety of transition metal
oxides show that the critical doping x

c

needed to de-
stroy insulating transport is not zero, but rather a sub-
statial fraction of unity [3], ranging from 0.1 in the nicke-
lates [4] to 0.5 in the vanadates [5]. Systematic variations
of x

c

with bandwidth also argue that it is an intrinsic
quantity[6], and motivate the search for mechanisms in-
dependent of disorder or coupling to lattice vibrations for
insulating behavior away from half-filling.

The scenario of doping a Mott insulator has been
heavily studied by a variety of techniques [7–10]. For
the classic case of a square lattice, basic issues such
as whether the Mott transition is first [11, 12] or sec-
ond [13–15] order, the specific parameter regimes and
underlying mechanisms of phase separation [16–20], and
the structure of the inhomogeneous phases [21–23] have
been actively researched, with results dependant on the
precise model considered. We take a di↵erent approach:
we assume the bandwidth-controlled Mott transition is
first-order and deduce its implications by constructing
a simple thermodynamic description. We predict that
the filling-controlled transition is first order as a conse-
quence, implying that phase separation occurs and the
critical doping scales as x

c

⇠
p
U � Uc, where Uc defines

the critical U for the bandwidth controlled transition.
We show how to compute x

c

in electronic structure cal-
culations [24], using the rare earth titanates [25, 26] as a
protypical example.

Thermodynamics – We construct a theory of the Mott
transition by connecting the bandwidth- and filling-
controlled transitions. By assuming the former transition
is first-order (which covers the majority of cases observed
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FIG. 1. The phase diagram for the Mott transition, plotted as
a function of interaction strength U and chemical potential µ.
The energy vs. µ curve at constant U exhibits level crossings
between the metallic and insulating states. The discontinu-
ity in the derivative x = �@✏/@µ implies thermodynamically
forbidden densities where the system will phase separate into
undoped x = 0 and critically-doped x = xc patches.

in experiment), we can explicitly write down the energy
densities ✏ = E/V for the metallic and insulating states,
since the two states must independently exist over a finite
parameter range and cross at the first-order transition.
We determine the phase boundary of the Mott transition
in the µ-U plane (µ is chemical potential) and compute
the scaling of the critical doping x

c

with U .
Consider a one-band Hubbard model on generic lat-

tice. The µ-U phase diagram generically consists of two
regions: a Mott insulator occupying a finite range in µ at
su�ciently large U > U

c

, and a Fermi liquid (actually a
superconductor or any other compressible phase includ-
ing a possible non-Fermi liquid will su�ce for the argu-
ment) everywhere else (Fig. 1). Expanding the grand-
canonical energy densities of the metal and insulator to
lowest order about the bandwidth-controlled transition
point (dot in labeled U

c

in Fig. 1), we obtain:

✏
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(µ,U) = ✏

0
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Here,  = @x/@µ is the electronic compressibility, where
the doping x = n�1 is defined relative to half-filling, and
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Motivated by the commonplace observation of Mott insulators away from integer filling, we con-
struct a simple thermodynamic argument for phase separation in first-order doping-driven Mott
transitions. We show how to compute the critical dopings required to drive the Mott transition
using electronic structure calculations for the titanate family of perovskites, finding good agreement
with experiment. The theory predicts the transition is percolative and should exhibit Coulomb
frustration.

The Mott transition is a pervasive and complex phe-
nomena, observed in many correlated oxide systems [1].
It comes in two varieties: the bandwidth-controlled tran-
sition at half-filling, tuned by the ratio of the on-site
Coulomb repulsion U and band-width W , and the filling-
controlled transition, tuned by electron doping x away
from half-filling. Theoretically, Mott insulators exist only
at half-filling: with one electron per site, hoppings neces-
sarily create empty and doubly-occupied sites which are
heavily penalized by U . Introducing a finite charge den-
sity allows carriers to move without incurring the on-site
Coulomb cost, destroying the Mott insulator [2]. How-
ever, experiments in a wide variety of transition metal
oxides show that the critical doping x

c

needed to de-
stroy insulating transport is not zero, but rather a sub-
statial fraction of unity [3], ranging from 0.1 in the nicke-
lates [4] to 0.5 in the vanadates [5]. Systematic variations
of x

c

with bandwidth also argue that it is an intrinsic
quantity[6], and motivate the search for mechanisms in-
dependent of disorder or coupling to lattice vibrations for
insulating behavior away from half-filling.

The scenario of doping a Mott insulator has been
heavily studied by a variety of techniques [7–10]. For
the classic case of a square lattice, basic issues such
as whether the Mott transition is first [11, 12] or sec-
ond [13–15] order, the specific parameter regimes and
underlying mechanisms of phase separation [16–20], and
the structure of the inhomogeneous phases [21–23] have
been actively researched, with results dependant on the
precise model considered. We take a di↵erent approach:
we assume the bandwidth-controlled Mott transition is
first-order and deduce its implications by constructing
a simple thermodynamic description. We predict that
the filling-controlled transition is first order as a conse-
quence, implying that phase separation occurs and the
critical doping scales as x

c

⇠
p
U � Uc, where Uc defines

the critical U for the bandwidth controlled transition.
We show how to compute x

c

in electronic structure cal-
culations [24], using the rare earth titanates [25, 26] as a
protypical example.

Thermodynamics – We construct a theory of the Mott
transition by connecting the bandwidth- and filling-
controlled transitions. By assuming the former transition
is first-order (which covers the majority of cases observed

FIG. 1. The phase diagram for the Mott transition, plotted as
a function of interaction strength U and chemical potential µ.
The energy vs. µ curve at constant U exhibits level crossings
between the metallic and insulating states. The discontinu-
ity in the derivative x = �@✏/@µ implies thermodynamically
forbidden densities where the system will phase separate into
undoped x = 0 and critically-doped x = xc patches.

in experiment), we can explicitly write down the energy
densities ✏ = E/V for the metallic and insulating states,
since the two states must independently exist over a finite
parameter range and cross at the first-order transition.
We determine the phase boundary of the Mott transition
in the µ-U plane (µ is chemical potential) and compute
the scaling of the critical doping x

c

with U .
Consider a one-band Hubbard model on generic lat-

tice. The µ-U phase diagram generically consists of two
regions: a Mott insulator occupying a finite range in µ at
su�ciently large U > U

c

, and a Fermi liquid (actually a
superconductor or any other compressible phase includ-
ing a possible non-Fermi liquid will su�ce for the argu-
ment) everywhere else (Fig. 1). Expanding the grand-
canonical energy densities of the metal and insulator to
lowest order about the bandwidth-controlled transition
point (dot in labeled U

c

in Fig. 1), we obtain:
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Here,  = @x/@µ is the electronic compressibility, where
the doping x = n�1 is defined relative to half-filling, and
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• Critical doping (metallic density)

x = �@✏m

@µ

=
p

�U · 2(dm � di)

• Analyze energy densities of metallic and insulating state close to    Uc



• Similar to liquid-gas transition: densities                      forbidden
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Figure 6. a) The schematic phase diagram in the presence of charge separation. This phase
diagram describes the transition between two states labeled Mott Liquid (ML) and Mott
Gas (MG) as a function of temperature, T , chemical potential, µ, and filling, n. The red
surface represents the coexistence region, which terminates in a critical point (CP). As
we go around the critical point the state changes smoothly from ML to MG. Along the
first order transition line and for a fixed T and µ, the filling has two values. b) Filling
as a function of chemical potential for several temperatures in the vicinity of the charge
separation critical point. The number next to each curve represents the temperature. The
coexisting phases are an incompressible Mott liquid at n ≈ 1 and a compressible Mott
gas at n ≈ 0.93. The critical temperature is Tc = 0.1t. The blue dashed line represents
the surface of metastability which is not accessible within the DCA. The green dotted line
represents the isothermal of the metastable state inside the phase coexistence region (gray
zone). At the critical point the isothermals for T > Tc cross. The inset shows the scaling
curve (n−nc)(T −Tc)

−β vs (µ−µc)(T −Tc)
−βδ in arbitrary units for µc = 3t, nc = 0.96,

Tc = 0.1t. The scaling exponents, β = 0.10± 0.05 and βδ ∼ 1, are roughly consistent with
the Ising universality class.

function of T , |µ|, and n. The red-colored surface is a schematic of the region where
the Mott liquid and Mott gas states, characterized by different densities, coexist
for T < Tc. The critical point is located at temperature Tc, filling nc, and chemical
potential µc. One can go from one state to the other either smoothly, by avoiding
the phase separation region, or through a first-order transition by crossing it. Right
on the phase separation region, the density has two values for a given value of µ
and T .

Macridin et al. (Macridin et al., 2006) provided compelling evidence of phase
separation in the case of the generalized Hubbard model (Eq. (1.2)) with positive
next-near-neighbor hopping t′ = 0.3 t and U = 8t. Using the DCA in a Nc = 8
cluster with HFQMC as the cluster solver, they showed that below a critical tem-
perature Tc ∼ 0.1t a first order transition occurs, which is identified by a hysteresis
in the n versus µ curve for T < Tc. As shown in Fig. 6(b) with more precise data
obtained using DQMC as the cluster solver, the hysteresis is between two states
of different filling, the Mott liquid at half filling and the Mott gas at a filling of
about 0.93 for T = 0.071t. The Mott liquid is incompressible and insulating. Its
compressibility, which is the slope of the filling vs µ curve in the high filling side
of the hysteresis curve, is small and decreases with temperature. Also the density
of states of the ML phase, shown in Fig. 7(a), exhibits a gap as expected for an

Article submitted to Royal Society

ML - Mott liquid 
MG - Mott gas

CP - critical point 
red - coexistance region

[D. Galanakis et al., Philosophical Transactions of the Royal Society A 369, 1670 (2011)]
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FIG. 2. Generic Mott phase diagram for a 3D system plotted
in the U -vs-x plane. Beginning at the pure Mott insulat-
ing state at zero doping x = 0, we progress through three
phase-separated states (shaded) to arrive at a uniform Fermi
liquid. The three phase-separated states have distinct mag-
netic (AF or PM) and transport (M or I) signatures. Since
the percolation threshold �

3D
c ⇠ 1/3, we expect an interme-

diate phase (AF-M, bolded text) where metallic conductivity
coexists with magnetic order. This intermediate phase is ab-
sent in 2D since �

2D
c ⇠ 1/2, so the metal and insulator are

never simultaneously percolated.

d

m

and d

i

are the per-site double-occupancies hni"ni#i in
the metallic and insulating states. The chemical poten-
tial �µ = µ�µn=1

and Coulomb repulsion �U = U�U

c

are measured relative to the bandwidth-controlled tran-
sition point.

Equating the two energies, we obtain the Mott phase
boundary,

�U =
�µ

2

2



d

m

� d

i

. (3)

The quadratic dependence U ⇠ µ

2 is observed within
DMFT [14]. Evaluating the metallic density x = �@✏/@µ

along the phase boundary, we obtain the critical doping

x

c

=
p

�U · 2(d
m

� d

i

). (4)

Similar to the liquid-gas transition, thermodynamics for-
bids charge densities lying in the range 0 < |x| < x

c

.
The system will phase separate if doped to lie within
this regime [20].

We note that the filling-controlled transition is not
doping in the conventional sense, where the insulator is
connected to a metal formed by shifting µ into the bands
lying adjacent to the spectral gap. Indeed the small-
ness of �µ for small �U implied by Eq. (3) dictates
that the first order transition occurs without the clos-
ing of the single-particle gap, when �U is small. Rather,
the Mott insulator transitions to a disconnected, lower-
energy, metallic state [11].

Phase separation – Thermodynamics forbids charge
densities in the range 0 < |x| < x

c

, causing the system
to phase separate into insulating regions with x = 0 and

FIG. 3. Density of states for end members LaTiO3 and YTiO3

of theRTiO3 series computed using DFT+DMFT. The reduc-
tion of bandwidth in YTiO3 enhances the relative strength of
correlations and produces a larger spectral gap. We empha-
size that a single set of Coulomb parameters were used for
both simulations, and the di↵erences are driven purely by
chemistry.

metallic regions with x = x

c

(shaded region in Fig. 2).
The surface energy E

surface

⇠ �L

d�1, where � > 0 is
the surface tension and L is the characteristic size of
a metallic region, favors forming a single large puddle.
However, the long-ranged part of the Coulomb interac-
tion E

coul

⇠ x

2

c

L

2d�1 penalizes macroscopic charge im-
balances. Balancing the two gives domains of typical size
L ⇠ (�/x2

c

)1/d. The actual spatial patterns formed de-
pend on system-specific details such as dimensionality,
anisotropy, and elastic forces [22].

Conducting transport does not coincide with the dis-
appearance of phase separation at x

c

and the formation
of the homogeneous metallic state, but rather when the
volume fraction x/x

c

⇠ � of the metallic puddles reaches
the percolation limit, roughly �

c

⇠ 1/3 in three dimen-
sions [27]. Depending on the spatial patterns favored, we
may expect anisotropic transport. Additionally, we pre-
dict an intermediate conducting magnetic state (AF-M in
Fig. 2) since long-range order persists as long as the insu-
lating regions percolate, up to doping x/x

c

⇠ 1��

c

. This
intermediate state does not exist in two dimensions since
�

c

⇠ 1/2, implying the metallic and insulating states
never simultaneously percolate.

Ab initio modeling – The rare earth titanates RTiO
3

are an ideal system to investigate the Mott transi-
tion [25, 26]. Varying the ionic radius of the rare earth
R tunes the correlation strength, while rare earth vacan-
cies [28] or Ca substitution [6] tunes the Ti valence from
d

1 to d

0. The interplay between structure, transport and
magnetism are well-characterized. Critical dopings, de-
termined via transport, range from 0.05 in LaTiO

3

to

• conducting regions percolate for 
• Mott regions percolate for

[J. W. Essam, Rep. Prog. Phys. 43, 833 (1980)]

surface tension: favors one big puddle 
Coulomb energy: penalizes charge imbalance

domains have size determined by this competition 
(Coulomb frustration of phase separation)

)



Numerics

• Use DFT+DMRG: calculate doping    as function of chemical potentialx

µ3

0.35 in YTiO
3

, and the predicted intermediate metal-
lic antiferromagnetic state has been observed [6], al-
though the claim is not without controversy [29]. Care-
ful bulk measurements suggest signatures of phase sepa-
ration [30, 31]. However, these prior studies su↵er from
chemical disorder due to the divalent substitution used to
obtain filling control, so recent synthesis of high-quality
electrostatically-doped heterostructures opens the possi-
bility of filling-control without cation disorder [32].

To apply our theory to the titanates, we perform elec-
tronic structure calculations using the combination of
density functional theory and dynamical mean-field the-
ory [24] with the implementation described in Ref. 33.
We used U = 9.0 eV and J = 0.8 eV for the strength
of the Coulomb repulsion on the Ti t

2g orbitals, and
E

dc

= U(nd � 1/2) � J(nd � 1)/2 with nd = 1.0 as the
standard double-counting energy. The empty eg orbitals
do not require correlations for their correct description.
We include all the valence states, notably the oxygen 2p
states in the hybridization window. We use T = 100 K,
well below the Mott transition temperature at half-filling.
The value for U was determined by requiring the cal-
culated gap of the end-member LaTiO

3

to match the
experimentally-determined value, reported to be in the
range 20 meV to 0.2 eV [34]. Once fixed, these param-
eters were used to for the entire RTiO

3

family. To cap-
ture correlations in the 4f shells of the compounds with
partially-filled rare earth ions, we applied the atomic self-
energy

⌃f (i!n) = ⌃
0

+
U

2

f p(1� p)

i!n + µ� Uf (p� 1/2)
, (5)

with the static shift ⌃
0

= �Uf (p�1/2)� ✏f . Here, Uf =
10 eV is the Hartree term on the f -shell, ✏f is the center of
mass of the f density of states, and p is the filling fraction
(e.g. 3/14 for NdTiO

3

). Since the chemical potential is
the independent variable in the scans needed to compute
the n vs. µ curves, we do not update the charge-density,
as this would have required self-consistent adjustment of
the nuclear charges. To obtain spectral quantities, we
analytically continued the 3d self-energy ⌃ onto the real
axis by applying the maximum entropy method to the
e↵ective Green’s function G = 1/(i!n � E � ⌃(i!n)).

Shown in Fig. 3 is the density of states for the end-
compounds LaTiO

3

and YTiO
3

. The contraction of the
cation ionic radii from La to Y enhances the octahedral
distortions, reducing the bandwidth of YTiO

3

relative
to LaTiO

3

(observed within DFT). The reduction places
the YTiO

3

deeper inside the Mott insulating state, which
is reflected in the increased spectral gap of nearly 2 eV.
The salient features—the location of the lower Hubbard
band and oxygen 2p binding energies—agree well with
photoemission [35, 36].

We explicitly determine the critical doping x

c

of the
titanates by monitoring the charge density as we lower

FIG. 4. Doping as a function of chemical potential near the
hole-doped Mott transtion, computed with DFT+DMFT for
representative members of the RTiO3 family. The size of the
density discontinuity (the critical doping xc) increases as we
progress away from the the largest rare earth La. The lines
are guides to the eye. The electron-doped transition can be
seen for LaTiO3 in the upper right.

the chemical potential to hole-dope the Mott insulator
(Fig. 4). The critical doping, as given by the disconti-
nuity between the insulator and Fermi liquid, increases
monotonically from⇠ 2% for La to⇠ 15% for Y, corrobo-
rating our expectation that correlations increase x

c

. We
note that the small contribution to the compressibility
due to the partially-filled 4f shells for the intermediate
rare earths has been subtracted out to give a flat n vs. µ
curve in the Mott insulating regime. We do not observe
a jump in GdTiO

3

and YTiO
3

because the Mott criti-
cal endpoint drops below the simulation temperature of
T = 100 K, as observed experimentally [6], so we roughly
extract x

c

by pinpointing the location of steepest slope
in the n vs. µ curve. The critical dopings are smaller
than experiment a factor of 2, which we attribute to the
e↵ect the strong chemical disorder required for doping,
as well as polarons, which is known to drive the finite-T
Mott transition more strongly first-order [37].

As a consistency check, we also determine x

c

for
representative compounds using Eq. 4, which is valid
near bandwidth-controlled transition point. First, we
determined the critical Coulomb strengths U

c

for the
bandwidth-controlled transition, which decrease from
LaTiO

3

to YTiO3
3

as expected. The charge compress-
ibility was obtained by scanning n vs. µ at U

c

. To ob-
tain the “double-occupancy” of the metallic and insu-
lating solutions, we note that in multiband models, the
Coulomb U couples to the generalization of the on-site
double-occupancies—the Hartree component of the po-
tential energy—Ni(Ni � 1)/2 where Ni runs from 0 to
10 within the 3d manifold. The extracted parameters

xc

size      :    correlations# #

x = �@✏m

@µ

=
p

�U · 2(dm � di)

4

Compound  (e/eV) dm di Uc (eV) xc

LaTiO3 0.20 0.15 0.13 8.8 4%

SmTiO3 0.22 0.22 0.19 6.0 20%

YTiO3 0.28 0.23 0.20 4.7 27%

TABLE I. For representative titanates, we tabulate the elec-
tronic compressibility per Ti atom  = @n/@µ, Hartree com-
ponent of the potential energy dm,i = hN(N � 1)/2i in
the metallic and insulating states, and the critical Coulomb
strengths Uc. Using �U = U � Uc where U = 9 eV in our
calculations, and Eq. 4, we compute the critical doping xc.

are shown in Table. I. Again, x
c

increases as we progress
from the least- to the most-correlated compounds and
roughly agree with those from the n vs. µ curves, even for
YTiO

3

which is quite far from the bandwidth-controlled
transition.

Summary – We have outlined a theory for the first-
order filling-controlled Mott transition, which predicts
intrinsic electronic phase separation when a Mott insu-
lator is doped away from half-filling, and demonstrated
explicitly how to calculate the critical doping x

c

in elec-
tronic structure calculations. The thermodynamic sig-
natures of this pervasive phase-separation has been ob-
served in many other correlated systems [1], as well as
directly using near-field optics on VO

2

[38] and STM in
the cuprates [39]. The key tasks to enhance the quan-
titative agreement between theory and experiment in-
volve (a) including disorder and polarons into theoret-
ical calculations, and (b) designing cleaner experimen-
tal systems where chemical disorder can be reduced, e.g.
through modulation-doped samples or oxide heterostruc-
tures. The accessibility of thin films to spatially resolved
probes (STM, spatially-resolved optics) is especially ad-
vantageous as they would allow direct visualization of the
phase separated region.
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FIG. 2. Generic Mott phase diagram for a 3D system plotted
in the U -vs-x plane. Beginning at the pure Mott insulat-
ing state at zero doping x = 0, we progress through three
phase-separated states (shaded) to arrive at a uniform Fermi
liquid. The three phase-separated states have distinct mag-
netic (AF or PM) and transport (M or I) signatures. Since
the percolation threshold �

3D
c ⇠ 1/3, we expect an interme-

diate phase (AF-M, bolded text) where metallic conductivity
coexists with magnetic order. This intermediate phase is ab-
sent in 2D since �

2D
c ⇠ 1/2, so the metal and insulator are

never simultaneously percolated.

d

m

and d

i

are the per-site double-occupancies hni"ni#i in
the metallic and insulating states. The chemical poten-
tial �µ = µ�µn=1

and Coulomb repulsion �U = U�U

c

are measured relative to the bandwidth-controlled tran-
sition point.

Equating the two energies, we obtain the Mott phase
boundary,

�U =
�µ

2

2



d

m

� d

i

. (3)

The quadratic dependence U ⇠ µ

2 is observed within
DMFT [14]. Evaluating the metallic density x = �@✏/@µ

along the phase boundary, we obtain the critical doping

x

c

=
p

�U · 2(d
m

� d

i

). (4)

Similar to the liquid-gas transition, thermodynamics for-
bids charge densities lying in the range 0 < |x| < x

c

.
The system will phase separate if doped to lie within
this regime [20].

We note that the filling-controlled transition is not
doping in the conventional sense, where the insulator is
connected to a metal formed by shifting µ into the bands
lying adjacent to the spectral gap. Indeed the small-
ness of �µ for small �U implied by Eq. (3) dictates
that the first order transition occurs without the clos-
ing of the single-particle gap, when �U is small. Rather,
the Mott insulator transitions to a disconnected, lower-
energy, metallic state [11].

Phase separation – Thermodynamics forbids charge
densities in the range 0 < |x| < x

c

, causing the system
to phase separate into insulating regions with x = 0 and

FIG. 3. Density of states for end members LaTiO3 and YTiO3

of theRTiO3 series computed using DFT+DMFT. The reduc-
tion of bandwidth in YTiO3 enhances the relative strength of
correlations and produces a larger spectral gap. We empha-
size that a single set of Coulomb parameters were used for
both simulations, and the di↵erences are driven purely by
chemistry.

metallic regions with x = x

c

(shaded region in Fig. 2).
The surface energy E

surface

⇠ �L

d�1, where � > 0 is
the surface tension and L is the characteristic size of
a metallic region, favors forming a single large puddle.
However, the long-ranged part of the Coulomb interac-
tion E

coul

⇠ x

2

c

L

2d�1 penalizes macroscopic charge im-
balances. Balancing the two gives domains of typical size
L ⇠ (�/x2

c

)1/d. The actual spatial patterns formed de-
pend on system-specific details such as dimensionality,
anisotropy, and elastic forces [22].

Conducting transport does not coincide with the dis-
appearance of phase separation at x

c

and the formation
of the homogeneous metallic state, but rather when the
volume fraction x/x

c

⇠ � of the metallic puddles reaches
the percolation limit, roughly �

c

⇠ 1/3 in three dimen-
sions [27]. Depending on the spatial patterns favored, we
may expect anisotropic transport. Additionally, we pre-
dict an intermediate conducting magnetic state (AF-M in
Fig. 2) since long-range order persists as long as the insu-
lating regions percolate, up to doping x/x

c

⇠ 1��

c

. This
intermediate state does not exist in two dimensions since
�

c

⇠ 1/2, implying the metallic and insulating states
never simultaneously percolate.

Ab initio modeling – The rare earth titanates RTiO
3

are an ideal system to investigate the Mott transi-
tion [25, 26]. Varying the ionic radius of the rare earth
R tunes the correlation strength, while rare earth vacan-
cies [28] or Ca substitution [6] tunes the Ti valence from
d

1 to d

0. The interplay between structure, transport and
magnetism are well-characterized. Critical dopings, de-
termined via transport, range from 0.05 in LaTiO

3

to

Phase separation in doped Mott insulators
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Motivated by the commonplace observation of Mott insulators away from integer filling, we con-
struct a simple thermodynamic argument for phase separation in first-order doping-driven Mott
transitions. We show how to compute the critical dopings required to drive the Mott transition
using electronic structure calculations for the titanate family of perovskites, finding good agreement
with experiment. The theory predicts the transition is percolative and should exhibit Coulomb
frustration.

The Mott transition is a pervasive and complex phe-
nomena, observed in many correlated oxide systems [1].
It comes in two varieties: the bandwidth-controlled tran-
sition at half-filling, tuned by the ratio of the on-site
Coulomb repulsion U and band-width W , and the filling-
controlled transition, tuned by electron doping x away
from half-filling. Theoretically, Mott insulators exist only
at half-filling: with one electron per site, hoppings neces-
sarily create empty and doubly-occupied sites which are
heavily penalized by U . Introducing a finite charge den-
sity allows carriers to move without incurring the on-site
Coulomb cost, destroying the Mott insulator [2]. How-
ever, experiments in a wide variety of transition metal
oxides show that the critical doping x

c

needed to de-
stroy insulating transport is not zero, but rather a sub-
statial fraction of unity [3], ranging from 0.1 in the nicke-
lates [4] to 0.5 in the vanadates [5]. Systematic variations
of x

c

with bandwidth also argue that it is an intrinsic
quantity[6], and motivate the search for mechanisms in-
dependent of disorder or coupling to lattice vibrations for
insulating behavior away from half-filling.

The scenario of doping a Mott insulator has been
heavily studied by a variety of techniques [7–10]. For
the classic case of a square lattice, basic issues such
as whether the Mott transition is first [11, 12] or sec-
ond [13–15] order, the specific parameter regimes and
underlying mechanisms of phase separation [16–20], and
the structure of the inhomogeneous phases [21–23] have
been actively researched, with results dependant on the
precise model considered. We take a di↵erent approach:
we assume the bandwidth-controlled Mott transition is
first-order and deduce its implications by constructing
a simple thermodynamic description. We predict that
the filling-controlled transition is first order as a conse-
quence, implying that phase separation occurs and the
critical doping scales as x

c

⇠
p
U � Uc, where Uc defines

the critical U for the bandwidth controlled transition.
We show how to compute x

c

in electronic structure cal-
culations [24], using the rare earth titanates [25, 26] as a
protypical example.

Thermodynamics – We construct a theory of the Mott
transition by connecting the bandwidth- and filling-
controlled transitions. By assuming the former transition
is first-order (which covers the majority of cases observed

FIG. 1. The phase diagram for the Mott transition, plotted as
a function of interaction strength U and chemical potential µ.
The energy vs. µ curve at constant U exhibits level crossings
between the metallic and insulating states. The discontinu-
ity in the derivative x = �@✏/@µ implies thermodynamically
forbidden densities where the system will phase separate into
undoped x = 0 and critically-doped x = xc patches.

in experiment), we can explicitly write down the energy
densities ✏ = E/V for the metallic and insulating states,
since the two states must independently exist over a finite
parameter range and cross at the first-order transition.
We determine the phase boundary of the Mott transition
in the µ-U plane (µ is chemical potential) and compute
the scaling of the critical doping x

c

with U .
Consider a one-band Hubbard model on generic lat-

tice. The µ-U phase diagram generically consists of two
regions: a Mott insulator occupying a finite range in µ at
su�ciently large U > U

c

, and a Fermi liquid (actually a
superconductor or any other compressible phase includ-
ing a possible non-Fermi liquid will su�ce for the argu-
ment) everywhere else (Fig. 1). Expanding the grand-
canonical energy densities of the metal and insulator to
lowest order about the bandwidth-controlled transition
point (dot in labeled U

c

in Fig. 1), we obtain:

✏

m

(µ,U) = ✏

0

+ d

m

�U � 1

2
(�µ)2 (1)

✏

i

(µ,U) = ✏

0

+ d

i

�U. (2)

Here,  = @x/@µ is the electronic compressibility, where
the doping x = n�1 is defined relative to half-filling, and
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�U · 2(dm � di)

• Simple thermodynamic theory

• Allows to determine critical doping

• For                       : percolation of phases0 < |x| < xc

4

Compound  (e/eV) dm di Uc (eV) xc

LaTiO3 0.20 0.15 0.13 8.8 4%

SmTiO3 0.22 0.22 0.19 6.0 20%

YTiO3 0.28 0.23 0.20 4.7 27%

TABLE I. For representative titanates, we tabulate the elec-
tronic compressibility per Ti atom  = @n/@µ, Hartree com-
ponent of the potential energy dm,i = hN(N � 1)/2i in
the metallic and insulating states, and the critical Coulomb
strengths Uc. Using �U = U � Uc where U = 9 eV in our
calculations, and Eq. 4, we compute the critical doping xc.

are shown in Table. I. Again, x
c

increases as we progress
from the least- to the most-correlated compounds and
roughly agree with those from the n vs. µ curves, even for
YTiO

3

which is quite far from the bandwidth-controlled
transition.

Summary – We have outlined a theory for the first-
order filling-controlled Mott transition, which predicts
intrinsic electronic phase separation when a Mott insu-
lator is doped away from half-filling, and demonstrated
explicitly how to calculate the critical doping x

c

in elec-
tronic structure calculations. The thermodynamic sig-
natures of this pervasive phase-separation has been ob-
served in many other correlated systems [1], as well as
directly using near-field optics on VO

2

[38] and STM in
the cuprates [39]. The key tasks to enhance the quan-
titative agreement between theory and experiment in-
volve (a) including disorder and polarons into theoret-
ical calculations, and (b) designing cleaner experimen-
tal systems where chemical disorder can be reduced, e.g.
through modulation-doped samples or oxide heterostruc-
tures. The accessibility of thin films to spatially resolved
probes (STM, spatially-resolved optics) is especially ad-
vantageous as they would allow direct visualization of the
phase separated region.
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Simple theoretical description: Mott-Hubbard

• Example for bosons on lattice (                   ) with 

!

• Bose-Hubbard Hamiltonian: 

!

!

• Mean field phase diagram:

• coordination number  
• hopping 
• on-site interaction
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[S. Sachdev, Quantum phase transitions]

hb†i bii = n in Mott lobe n


