
A
lthough the present International Sys-
tem of Units (SI, from the French Système
International d’Unités) was officially es-
tablished in 1960, its origin goes back to
the creation of the metric system during

the French Revolution. Following an idea proposed
a century earlier by John Wilkins,1 the new system
of weights and measures took as its starting point a
single universal measure—the meter—and used it
to define length, volume, and mass. The meter came
from a perceived constant of nature: one ten-
 millionth of the distance along Earth’s meridian
through Paris from the North Pole to the equator.2
Definitions for the units of volume and mass fol-
lowed, with the liter being 0.001 m3 and the kilo-
gram the mass of 1 liter of distilled water at 4 °C.
Subsequently, in 1799, two platinum artifact stan-
dards for length and mass based on those definitions
were deposited in the Archives de la République in
Paris. In the words of the Marquis de Condorcet, a
new system of measurement “for all time, for all
people” was born.

Seventy-six years later, the signing of the Meter
Convention in 1875 established three international
organizations: the General Conference on Weights
and Measures (CGPM), the International Commit-
tee for Weights and Measures (CIPM), and the In-
ternational Bureau of Weights and Measures
(BIPM). They were formally tasked with maintain-
ing the SI and continue to do so. 

The SI is a living, evolving system, changing as
new knowledge and measurement needs arise, al-
beit sometimes slowly when measured against the
rapid pace of scientific progress. For example, in the
18th and 19th centuries when natural philosophers
and scientists tried to apply the system of length,
mass, and time—with time defined by astronomical
observations—to quantify newly discovered phe-
nomena such as magnetism and electricity and the
concept of energy, they also discovered the need for
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A “no-knowledge” measurement of an open quantum system yields no information about any system
observable; it only returns noise input from the environment. Surprisingly, performing such a no-
knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge
monitoring has reversible noise, which can be canceled by directly feeding back the measurement signal.
We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum
system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not
depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general and
robust, and can operate in conjunction with any other quantum control protocol. As an application, we
show that no-knowledge feedback could be used to improve the performance of dissipative quantum
computers subjected to local loss.
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“More signal, less noise” is the guiding philosophy of
experimental science. Increasing measurement sensitivity
is a proven strategy for pushing the frontiers of science
and technology, yielding improved knowledge and control
over nature. However, at the quantum scale physics pushes
back by imposing a fundamental limit on the signal-to-noise
ratio by virtue of Heisenberg’s uncertainty principle [1,2].
Nevertheless, “more signal, less noise” also guides the design
of protocols for the measurement and control of quantum
systems, such as squeezed state photon [3] and atom [4]
interferometry, optimal parameter estimation [5], weak
measurement [6], measurement-based feedback control
[5,7], and adaptive measurement [8]. In this Letter, we take
the unorthodox “no signal, only noise” approach, and
consider measurements that are pure noise, and therefore
give no knowledge of the quantum state whatsoever. From
a quantum control perspective, one intuitively expects
such “no-knowledge” measurements to be unworthy of
study, since robust feedback control requires at least some
(and preferably good) knowledge of the system state. On the
contrary, we show that a measurement-based feedback
protocol based on no-knowledge monitoring can be used
to remove decoherence—the bane of quantum technology—
from an arbitrary quantum system coupled to a Markovian
environment that can be monitored.
Although the “no signal, only noise” approach is unor-

thodox, it has been considered within the context of channel
correction. In Refs. [9–11], it was proven that coherence
could be recovered in a noisy channel provided the

conditional evolution was random unitary. Consequently,
complete correction is, in principle, possible for systems
with dimension d ≤ 3. Furthermore, it was proven that
measurements that returned a small amount of knowledge
(“little signal, mostly noise”) provided a good error correc-
tion strategy, and a tradeoff relation between information
extraction and correction efficacy was established [12].
Our no-knowledge feedback scheme is consistent with
these results; however, it goes several steps further as
(1) it concretely shows how decoherence can be canceled
in a system of arbitrary dimension, with arbitrary coupling to
a Markovian environment, and (2) it provides the explicit
physical description of both the measurement and the
conditional evolution via our use of the continuous quantum
measurement framework.
Attempts to mitigate decoherence have resulted in

significant successes, including the development of error
correction codes [13–16], dynamical decoupling [17],
reservoir engineering [18,19], feedback control [20–24],
and the engineering of decoherence-free subspaces [25,26].
Nevertheless, decoherence has yet to be adequately tamed.
In our proposal, decoherence is canceled by directly feeding
the no-knowledge measurement signal back into the
system, in effect turning quantum noise against itself.
The scheme only requires knowledge of the decoherence
channel to be canceled; no knowledge of the system state is
required. It is consequently effective and robust, and can be
used in conjunction with other quantum control protocols.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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new units of measure. The likes of Carl Friedrich
Gauss, Wilhelm Weber, James Clerk Maxwell, and
Lord Kelvin, pioneers in the new science, helped to
expand the system and developed the conceptual
framework of a coherent system with base mechan-
ical units from which to create derived units as
needed. The system included clear explanations of
how to realize the base units through measurement,
and the coherent derived units were products of
powers of the base units with a prefactor of 1.

The timeline in figure 1 shows that despite nu-
merous changes, the SI still has this fundamental
framework, with 7 base units (and associated defi-
nitions for realizing them) and 22 derived units with
special names and symbols.3 However, international
consensus is building to once again advance the SI
to reflect contemporary understanding of the phys-
ical world. The new framework of the future SI will
no longer define seven base units and coherently de-
rived units; instead, it will adopt exact values for
seven fundamental constants of nature on which all
SI units will be realized. Gone are the base units and
their definitions. 

How to make a system of units
A system of units to express all physical measure-
ments must take into consideration all physical
quantities and the equations that relate those quan-
tities—namely, the accepted laws of physics. A sim-
ple example is
                     F = ma = m dv/dt = m d2x/dt2,                 (1)
where force F, mass m, acceleration a, velocity v,
length x, and time t are all quantities and the rela-

tions are Newton’s second law of motion and basic
dynamics. 

Carefully choosing a subset of independent
base quantities allows one to derive the remaining
quantities as functions of the chosen subset through
the accepted laws of physics. The selection of base
quantities is not unique; but they must be complete
and nonredundant.4 For example, if equation 1 were
all we knew about the physical world (six quanti-
ties, three constraints), choosing either force or mass
and any two of the remaining five quantities would
give us an independent set of three base quantities. 

However, we are not yet done. To fully define
the system of units, we must assign a specific refer-
ence quantity to each base quantity. The reference
quantity can be a specific artifact, as is the case for
the base quantity of mass in the present SI—the in-
ternational prototype of the kilogram (IPK). Alter-
natively, in the energy equivalence relations
                          E = hν = mc2 = eV = kT,                      (2)
the Planck constant h, the speed of light c, the ele-
mentary charge e, and the Boltzmann constant k can
also be reference quantities since they are invariants
with specific values. 

The present SI has seven base quantities: time,
length, mass, electric current, thermodynamic tem-
perature, amount of substance, and luminous inten-
sity. The specific reference quantities are the defini-
tions shown in table 1. In other words, the reference
quantities in the present SI are the definitions of the
base units: the second, meter, kilogram, ampere,
kelvin, mole, and candela.

The new SI will also have seven base quantities:
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System of units

2018
The new SI will specify the exact

values of seven fundamental constants,
shown in table 2. All SI units will be

based on those defining constants.

1983
A new definition
of the meter links
it to the speed of
light in vacuum.

1799
The metric system is born.

The Archives de la
République in Paris

receives two platinum
artifact standards

representing the meter
and kilogram.

1971
The mole becomes a
new base unit of the
SI, and the list of base
units grows to seven.

1967
The second is
redefined in terms of
the hyperfine splitting
frequency of the
cesium-133 atom.

1889
The first General

Conference on Weights
and Measures (CGPM)

approves a system of
measures with the base

units meter, kilogram,
and second.

1954
The ampere, kelvin,

and candela are
officially adopted as

base units by the
10th CGPM.

1960
The 11th CGPM adopts
the name International

System of Units (SI) with
the base units meter,

kilogram, second, ampere,
kelvin, and candela. The
meter is redefined as the
wavelength of radiation

from a specific excitation
in krypton-86.

1668
John Wilkins's essay
is published.

1875
Seventeen member nations
sign the Meter Convention.

Work begins on constructing
new international prototypes

for the meter and kilogram.

Figure 1. Evolution of the SI. A brief timeline of the history of the International System
of Units since John Wilkins’s 1668 essay is scaled to a meter bar. The photograph shows
a marble meter standard in Paris, dating from the 18th century. (Photo courtesy of
LPLT\Wikimedia Commons.)
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt%: ð5Þ

Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt%.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H − ffiffiffi
η

p
Lyπ=2ðtÞ; ρt% þ ð1 − ηÞD½L%ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi

η
p

Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞD½L%ρt: ð7Þ

Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt% þD½L%ϱt þD½L†%ϱt: ð8Þ

The “trick” is to recognize that D½L%ρt þD½L†%ρt ¼
D½Lþ%ρt þD½L−%ρt, where L' ¼ ið1∓1Þ=2ðL' L†Þ=

ffiffiffi
2

p

are Hermitian. Thus, L' are effective coupling operators
that admit no-knowledge measurements.
Measurements of L' are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y'θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL'it þ ξ'ðtÞ, where ξ'ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L' occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-
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new units of measure. The likes of Carl Friedrich
Gauss, Wilhelm Weber, James Clerk Maxwell, and
Lord Kelvin, pioneers in the new science, helped to
expand the system and developed the conceptual
framework of a coherent system with base mechan-
ical units from which to create derived units as
needed. The system included clear explanations of
how to realize the base units through measurement,
and the coherent derived units were products of
powers of the base units with a prefactor of 1.

The timeline in figure 1 shows that despite nu-
merous changes, the SI still has this fundamental
framework, with 7 base units (and associated defi-
nitions for realizing them) and 22 derived units with
special names and symbols.3 However, international
consensus is building to once again advance the SI
to reflect contemporary understanding of the phys-
ical world. The new framework of the future SI will
no longer define seven base units and coherently de-
rived units; instead, it will adopt exact values for
seven fundamental constants of nature on which all
SI units will be realized. Gone are the base units and
their definitions. 

How to make a system of units
A system of units to express all physical measure-
ments must take into consideration all physical
quantities and the equations that relate those quan-
tities—namely, the accepted laws of physics. A sim-
ple example is
                     F = ma = m dv/dt = m d2x/dt2,                 (1)
where force F, mass m, acceleration a, velocity v,
length x, and time t are all quantities and the rela-

tions are Newton’s second law of motion and basic
dynamics. 

Carefully choosing a subset of independent
base quantities allows one to derive the remaining
quantities as functions of the chosen subset through
the accepted laws of physics. The selection of base
quantities is not unique; but they must be complete
and nonredundant.4 For example, if equation 1 were
all we knew about the physical world (six quanti-
ties, three constraints), choosing either force or mass
and any two of the remaining five quantities would
give us an independent set of three base quantities. 

However, we are not yet done. To fully define
the system of units, we must assign a specific refer-
ence quantity to each base quantity. The reference
quantity can be a specific artifact, as is the case for
the base quantity of mass in the present SI—the in-
ternational prototype of the kilogram (IPK). Alter-
natively, in the energy equivalence relations
                          E = hν = mc2 = eV = kT,                      (2)
the Planck constant h, the speed of light c, the ele-
mentary charge e, and the Boltzmann constant k can
also be reference quantities since they are invariants
with specific values. 

The present SI has seven base quantities: time,
length, mass, electric current, thermodynamic tem-
perature, amount of substance, and luminous inten-
sity. The specific reference quantities are the defini-
tions shown in table 1. In other words, the reference
quantities in the present SI are the definitions of the
base units: the second, meter, kilogram, ampere,
kelvin, mole, and candela.

The new SI will also have seven base quantities:
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System of units

2018
The new SI will specify the exact

values of seven fundamental constants,
shown in table 2. All SI units will be

based on those defining constants.

1983
A new definition
of the meter links
it to the speed of
light in vacuum.

1799
The metric system is born.

The Archives de la
République in Paris

receives two platinum
artifact standards

representing the meter
and kilogram.

1971
The mole becomes a
new base unit of the
SI, and the list of base
units grows to seven.

1967
The second is
redefined in terms of
the hyperfine splitting
frequency of the
cesium-133 atom.

1889
The first General

Conference on Weights
and Measures (CGPM)

approves a system of
measures with the base

units meter, kilogram,
and second.

1954
The ampere, kelvin,

and candela are
officially adopted as

base units by the
10th CGPM.

1960
The 11th CGPM adopts
the name International

System of Units (SI) with
the base units meter,

kilogram, second, ampere,
kelvin, and candela. The
meter is redefined as the
wavelength of radiation

from a specific excitation
in krypton-86.

1668
John Wilkins's essay
is published.

1875
Seventeen member nations
sign the Meter Convention.

Work begins on constructing
new international prototypes

for the meter and kilogram.

Figure 1. Evolution of the SI. A brief timeline of the history of the International System
of Units since John Wilkins’s 1668 essay is scaled to a meter bar. The photograph shows
a marble meter standard in Paris, dating from the 18th century. (Photo courtesy of
LPLT\Wikimedia Commons.)
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frequency, velocity, action, electric charge, heat ca-
pacity, amount of substance, and luminous inten-
sity. The specific reference quantities will be the
exact values of a set of defining constants: the
ground-state hyperfine splitting of the cesium-133
atom ∆ν(133Cs)hfs, c, h, e, k, the Avogadro constant NA,
and the luminous efficacy Kcd. However, to provide
continuity and ease of transition, their values will
be expressed in terms of the present SI units instead
of in potentially confusing new base units. Table 2
shows the new base quantities and the associated
defining constants with their definitions.

Small step or giant leap?
As can be seen in tables 1 and 2, the present and fu-
ture definitions of the SI have similarities, especially
when one compares the present base quantities of
time and length with the new base quantities of fre-
quency and velocity. The definitions are fully equiv-
alent, as is also the case for luminous intensity. That
equivalence is because the present SI has already in-

corporated invariants of nature as part of its foun-
dation, thanks to the 1967 and 1983 redefinitions of
the second and meter, respectively. In fact, if the IPK
were temporarily granted the status of an invariant
of nature, all of the present base unit definitions
could be recast into the form of the new SI.5 After
∆ν(133Cs)hfs, c, and Kcd, the four remaining definitions
would be:
‣ The mass of the international prototype of the
kilogram, m(K), is exactly 1 kilogram.
‣ The magnetic permeability, µ0, is exactly 4π × 10−7

newton per ampere squared.
‣ The triple point of water, TTPW, is exactly 273.16
kelvin.
‣ The molar mass of carbon-12,M(12C), is exactly
0.012 kilogram per mole.

Because the SI has been continually evolving
with new knowledge and technological advances, it
might appear that the impending change is just an-
other incremental improvement with an exchange
of “invariants” in which m(K), µ0, TTPW, and M(12C)
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Table 1. Present SI base quantities, base units, and definitions

Base quantity Base unit Definition

Time second The second is the duration of 9 192 631 770 periods of the radiation corresponding to the 
transition between the two hyperfine levels of the ground state of the cesium-133 atom.

Length meter The meter is the length of the path traveled by light in vacuum during a time interval of 
1/299 792 458 of a second. 

Mass kilogram The kilogram is the unit of mass; it is equal to the mass of the international prototype of the
kilogram.

Electric current ampere
The ampere is that constant current which, if maintained in two straight parallel conductors of
infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would
produce between these conductors a force equal to 2 × 10−7 newton per meter of length.

Thermodynamic
temperature kelvin The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic

temperature of the triple point of water.

Amount of 
substance mole

The mole is the amount of substance of a system which contains as many elementary entities as
there are atoms in 0.012 kilogram of carbon-12; the elementary entities must be specified and
may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.

Luminous 
intensity candela

The candela is the luminous intensity, in a given direction, of a source that emits monochro-
matic radiation of frequency 540 × 1012 hertz and that has a radiant intensity in that direction of
1/683 watt per steradian.

Table 2. New SI base quantities, defining constants, and definitions

Base quantity Defining
constant Definition

Frequency Δν(133Cs)hfs
The unperturbed ground-state hyperfine splitting frequency of the cesium-133 atom 
Δν(133Cs)hfs is exactly 9 192 631 770 hertz.

Velocity c The speed of light in vacuum c is exactly 299 792 458 meter per second. 

Action h The Planck constant h is exactly 6.626X × 10−34 joule second.

Electric charge e The elementary charge e is exactly 1.602X × 10−19 coulomb.

Heat capacity k The Boltzmann constant k is exactly 1.380X × 10−23 joule per kelvin. 

Amount of 
substance NA The Avogadro constant NA is exactly 6.022X × 1023 reciprocal mole.

Luminous 
intensity Kcd

The luminous efficacy Kcd of monochromatic radiation of frequency 540 × 1012 hertz is exactly
683 lumen per watt. 

The symbol X in the numerical values indicates additional digits to be set upon redefinition of the SI. The term “defining 
constant” is used in the broader sense to include invariants of nature such as the hyperfine splitting frequency of the 
cesium-133 atom and the luminous efficacy. 
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reproducibility, accessibility, and the precision at
which measurements can be made today. Compar-
isons of Josephson voltage standards and of quan-
tized Hall resistance standards linked to the values
of h and e (see figure 2) have relative uncertainties8,9
of a few parts in 1018 and 1011, respectively. Con-
versely, the gravitational constant G—which might
seem a reasonable choice for a fundamental con-
stant more directly linked to the traditional base 
mechanical units—is inherently difficult to measure
(see the article by Clive Speake and Terry Quinn on
page 27). 

Impact and consequences
The impact of defining h, e, k, and NA as exact will
extend substantially beyond providing a basis for a
system of units. Many other fundamental constants
will simultaneously become exact due to the inher-
ent relationships among them through the accepted
laws of physics. 

Another important consequence will be exact
conversion factors, with no uncertainty, for express-
ing energy in units of joule, kilogram, inverse meter,
hertz, kelvin, or electron volt. No longer will unit
conversion cause an additional uncertainty compo-
nent to appear—for example, when a researcher 
reports the mass of some particle in kilograms when
in fact the measurement was in eV or hertz. In 
addition, many of the other fundamental constants
will have substantially reduced uncertainties. 

The International Council for Science’s Commit-
tee on Data for Science and Technology (CODATA)
periodically provides the scientific and technologi-
cal communities with a self-consistent set of inter-
nationally recommended values for fundamental
constants and conversion factors. (See the article by
Peter Mohr and Barry Taylor, PHYSICS TODAY, March
2001, page 29.) Table 3, listing the uncertainties of a
select group of fundamental constants in the present
SI, based on the 2010 CODATA recommendations,10
and in the new SI, shows the dramatic decrease in
uncertainty of most of the constants. Due to new 
relevant data since the 2010 adjustment, the uncer-
tainties are expected to further decrease for the up-
coming 2014 CODATA adjustment.

When the CGPM approves the redefinition of
the SI, the CODATA Task Group on Fundamental
Constants will perform two special evaluations of
the fundamental constants. The first will be similar
to its periodic determinations, but with the goal of
determining the best values of the defining con-
stants h, e, k, and NA. The second will be to determine
the values and greatly reduced uncertainties of the
remaining constants based on the newly exact defin-
ing constants.

The framework of the new SI, with exact defin-
ing constants, will have significant consequences for
national metrology institutes and practical metrol-
ogy. The value of TTPW will not change, but a relative
uncertainty component on the order of 1 × 10−6 or
less will be added. The value of M(12C) will not
change, but a relative uncertainty component on the
order of 7 × 10−10 or less will be added. The value of
m(K) will not change, but a relative uncertainty on
the order of 2 × 10−8 or less will be added. The IPK

will become just another artifact with no special po-
sition in the SI. Anyone with the ability to make ap-
propriate measurements related to the defining con-
stants will be able to realize the kilogram. 

What about the ampere?
With the discoveries of the Josephson and quantum
Hall effects, it became possible to conceive of quan-
tum electrical standards that relate electrical units
to h and e through the Josephson constant, KJ = 2e/h,
and the von Klitzing constant, RK = h/e2. Figure 2 ex-
plains the operation of two such quantum electrical
standards in use at NIST. In 1990 the CIPM adopted
exact values for the constants, now labeled KJ−90 and
RK−90, based on the best available data.11 Since then,
almost all electrical metrology has been traceable to
conventional electrical units of voltage and resis -
tance linked to KJ−90 and RK−90. However, the present
SI continues to define the ampere as the current in
two infinitely long, negligibly thin wires set 1 m
apart that will produce a force of 2 × 10−7 N for each
meter of length. That is, for a quarter of a century,
almost all electrical metrology has used a system of
units that is not part of the SI. Defining h and e
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Table 3. Changing uncertainties for fundamental constants

Quantity Symbol Present SI
ur × 109

New SI
ur × 109

International prototype of the kilogram m(K) 0 44

Permeability of free space µ0 0 0.32

Permittivity of free space ε0 0 0.32

Triple point of water TTPW 0 910

Molar mass of carbon-12 M(12C) 0 0.70

Planck constant h 44 0

Elementary charge e 22 0

Boltzmann constant k 910 0

Avogadro constant NA 44 0

Molar gas constant R 910 0

Faraday constant F 22 0

Stefan–Boltzmann constant σ 3600 0

Electron mass me 44 0.64

Atomic mass unit mu 44 0.70

Mass of carbon-12 m(12C) 44 0.70

Josephson constant KJ 22 0

von Klitzing constant RK 0.32 0

Fine-structure constant α 0.32 0.32

E = mc2 energy equivalent J↔kg 0 0

E = hc/λ energy equivalent J↔m–1 44 0

E = hν energy equivalent J↔Hz 44 0

E = kT energy equivalent J↔K 910 0

1 J = 1 (C/e) eV energy equivalent J↔eV 22 0

Relative uncertainties, ur , for some fundamental constants and energy 
equivalents are given in parts in 109. Present relative uncertainties are based 
on the 2010 CODATA adjustment of the fundamental constants.10 Note that ur
of m(K) in the present SI is 0 only by definition. The new SI relative uncertainties
assume fixed values of the Planck constant h, elementary charge e, Boltzmann
constant k, and Avogadro constant NA.
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prototype of the 
kilogram

• new SI with increased 
scalability, accessibility

• exact conversion 
factors for energy

Consequences

new units of measure. The likes of Carl Friedrich
Gauss, Wilhelm Weber, James Clerk Maxwell, and
Lord Kelvin, pioneers in the new science, helped to
expand the system and developed the conceptual
framework of a coherent system with base mechan-
ical units from which to create derived units as
needed. The system included clear explanations of
how to realize the base units through measurement,
and the coherent derived units were products of
powers of the base units with a prefactor of 1.

The timeline in figure 1 shows that despite nu-
merous changes, the SI still has this fundamental
framework, with 7 base units (and associated defi-
nitions for realizing them) and 22 derived units with
special names and symbols.3 However, international
consensus is building to once again advance the SI
to reflect contemporary understanding of the phys-
ical world. The new framework of the future SI will
no longer define seven base units and coherently de-
rived units; instead, it will adopt exact values for
seven fundamental constants of nature on which all
SI units will be realized. Gone are the base units and
their definitions. 

How to make a system of units
A system of units to express all physical measure-
ments must take into consideration all physical
quantities and the equations that relate those quan-
tities—namely, the accepted laws of physics. A sim-
ple example is
                     F = ma = m dv/dt = m d2x/dt2,                 (1)
where force F, mass m, acceleration a, velocity v,
length x, and time t are all quantities and the rela-

tions are Newton’s second law of motion and basic
dynamics. 

Carefully choosing a subset of independent
base quantities allows one to derive the remaining
quantities as functions of the chosen subset through
the accepted laws of physics. The selection of base
quantities is not unique; but they must be complete
and nonredundant.4 For example, if equation 1 were
all we knew about the physical world (six quanti-
ties, three constraints), choosing either force or mass
and any two of the remaining five quantities would
give us an independent set of three base quantities. 

However, we are not yet done. To fully define
the system of units, we must assign a specific refer-
ence quantity to each base quantity. The reference
quantity can be a specific artifact, as is the case for
the base quantity of mass in the present SI—the in-
ternational prototype of the kilogram (IPK). Alter-
natively, in the energy equivalence relations
                          E = hν = mc2 = eV = kT,                      (2)
the Planck constant h, the speed of light c, the ele-
mentary charge e, and the Boltzmann constant k can
also be reference quantities since they are invariants
with specific values. 

The present SI has seven base quantities: time,
length, mass, electric current, thermodynamic tem-
perature, amount of substance, and luminous inten-
sity. The specific reference quantities are the defini-
tions shown in table 1. In other words, the reference
quantities in the present SI are the definitions of the
base units: the second, meter, kilogram, ampere,
kelvin, mole, and candela.

The new SI will also have seven base quantities:
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System of units

2018
The new SI will specify the exact

values of seven fundamental constants,
shown in table 2. All SI units will be

based on those defining constants.

1983
A new definition
of the meter links
it to the speed of
light in vacuum.

1799
The metric system is born.

The Archives de la
République in Paris

receives two platinum
artifact standards

representing the meter
and kilogram.

1971
The mole becomes a
new base unit of the
SI, and the list of base
units grows to seven.

1967
The second is
redefined in terms of
the hyperfine splitting
frequency of the
cesium-133 atom.

1889
The first General

Conference on Weights
and Measures (CGPM)

approves a system of
measures with the base

units meter, kilogram,
and second.

1954
The ampere, kelvin,

and candela are
officially adopted as

base units by the
10th CGPM.

1960
The 11th CGPM adopts
the name International

System of Units (SI) with
the base units meter,

kilogram, second, ampere,
kelvin, and candela. The
meter is redefined as the
wavelength of radiation

from a specific excitation
in krypton-86.

1668
John Wilkins's essay
is published.

1875
Seventeen member nations
sign the Meter Convention.

Work begins on constructing
new international prototypes

for the meter and kilogram.

Figure 1. Evolution of the SI. A brief timeline of the history of the International System
of Units since John Wilkins’s 1668 essay is scaled to a meter bar. The photograph shows
a marble meter standard in Paris, dating from the 18th century. (Photo courtesy of
LPLT\Wikimedia Commons.)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
134.34.219.246 On: Thu, 24 Jul 2014 12:20:50



Ignorance Is Bliss: General and Robust Cancellation of Decoherence
via No-Knowledge Quantum Feedback

Stuart S. Szigeti,1,* Andre R. R. Carvalho,2,3 James G. Morley,4 and Michael R. Hush4
1ARC Centre for Engineered Quantum Systems, The University of Queensland, Brisbane, Queensland 4072, Australia
2Department of Quantum Science, Research School of Physics and Engineering, The Australian National University,

Canberra, Australian Capital Territory 0200, Australia
3ARC Centre for Quantum Computation and Communication Technology, The Australian National University,

Canberra, Australian Capital Territory 0200, Australia
4School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

(Received 4 March 2014; published 10 July 2014)

A “no-knowledge” measurement of an open quantum system yields no information about any system
observable; it only returns noise input from the environment. Surprisingly, performing such a no-
knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge
monitoring has reversible noise, which can be canceled by directly feeding back the measurement signal.
We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum
system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not
depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general and
robust, and can operate in conjunction with any other quantum control protocol. As an application, we
show that no-knowledge feedback could be used to improve the performance of dissipative quantum
computers subjected to local loss.

DOI: 10.1103/PhysRevLett.113.020407 PACS numbers: 03.65.Yz, 03.65.Ta, 03.67.Pp, 42.50.Lc

“More signal, less noise” is the guiding philosophy of
experimental science. Increasing measurement sensitivity
is a proven strategy for pushing the frontiers of science
and technology, yielding improved knowledge and control
over nature. However, at the quantum scale physics pushes
back by imposing a fundamental limit on the signal-to-noise
ratio by virtue of Heisenberg’s uncertainty principle [1,2].
Nevertheless, “more signal, less noise” also guides the design
of protocols for the measurement and control of quantum
systems, such as squeezed state photon [3] and atom [4]
interferometry, optimal parameter estimation [5], weak
measurement [6], measurement-based feedback control
[5,7], and adaptive measurement [8]. In this Letter, we take
the unorthodox “no signal, only noise” approach, and
consider measurements that are pure noise, and therefore
give no knowledge of the quantum state whatsoever. From
a quantum control perspective, one intuitively expects
such “no-knowledge” measurements to be unworthy of
study, since robust feedback control requires at least some
(and preferably good) knowledge of the system state. On the
contrary, we show that a measurement-based feedback
protocol based on no-knowledge monitoring can be used
to remove decoherence—the bane of quantum technology—
from an arbitrary quantum system coupled to a Markovian
environment that can be monitored.
Although the “no signal, only noise” approach is unor-

thodox, it has been considered within the context of channel
correction. In Refs. [9–11], it was proven that coherence
could be recovered in a noisy channel provided the

conditional evolution was random unitary. Consequently,
complete correction is, in principle, possible for systems
with dimension d ≤ 3. Furthermore, it was proven that
measurements that returned a small amount of knowledge
(“little signal, mostly noise”) provided a good error correc-
tion strategy, and a tradeoff relation between information
extraction and correction efficacy was established [12].
Our no-knowledge feedback scheme is consistent with
these results; however, it goes several steps further as
(1) it concretely shows how decoherence can be canceled
in a system of arbitrary dimension, with arbitrary coupling to
a Markovian environment, and (2) it provides the explicit
physical description of both the measurement and the
conditional evolution via our use of the continuous quantum
measurement framework.
Attempts to mitigate decoherence have resulted in

significant successes, including the development of error
correction codes [13–16], dynamical decoupling [17],
reservoir engineering [18,19], feedback control [20–24],
and the engineering of decoherence-free subspaces [25,26].
Nevertheless, decoherence has yet to be adequately tamed.
In our proposal, decoherence is canceled by directly feeding
the no-knowledge measurement signal back into the
system, in effect turning quantum noise against itself.
The scheme only requires knowledge of the decoherence
channel to be canceled; no knowledge of the system state is
required. It is consequently effective and robust, and can be
used in conjunction with other quantum control protocols.
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measurement [6], measurement-based feedback control
[5,7], and adaptive measurement [8]. In this Letter, we take
the unorthodox “no signal, only noise” approach, and
consider measurements that are pure noise, and therefore
give no knowledge of the quantum state whatsoever. From
a quantum control perspective, one intuitively expects
such “no-knowledge” measurements to be unworthy of
study, since robust feedback control requires at least some
(and preferably good) knowledge of the system state. On the
contrary, we show that a measurement-based feedback
protocol based on no-knowledge monitoring can be used
to remove decoherence—the bane of quantum technology—
from an arbitrary quantum system coupled to a Markovian
environment that can be monitored.
Although the “no signal, only noise” approach is unor-

thodox, it has been considered within the context of channel
correction. In Refs. [9–11], it was proven that coherence
could be recovered in a noisy channel provided the

conditional evolution was random unitary. Consequently,
complete correction is, in principle, possible for systems
with dimension d ≤ 3. Furthermore, it was proven that
measurements that returned a small amount of knowledge
(“little signal, mostly noise”) provided a good error correc-
tion strategy, and a tradeoff relation between information
extraction and correction efficacy was established [12].
Our no-knowledge feedback scheme is consistent with
these results; however, it goes several steps further as
(1) it concretely shows how decoherence can be canceled
in a system of arbitrary dimension, with arbitrary coupling to
a Markovian environment, and (2) it provides the explicit
physical description of both the measurement and the
conditional evolution via our use of the continuous quantum
measurement framework.
Attempts to mitigate decoherence have resulted in

significant successes, including the development of error
correction codes [13–16], dynamical decoupling [17],
reservoir engineering [18,19], feedback control [20–24],
and the engineering of decoherence-free subspaces [25,26].
Nevertheless, decoherence has yet to be adequately tamed.
In our proposal, decoherence is canceled by directly feeding
the no-knowledge measurement signal back into the
system, in effect turning quantum noise against itself.
The scheme only requires knowledge of the decoherence
channel to be canceled; no knowledge of the system state is
required. It is consequently effective and robust, and can be
used in conjunction with other quantum control protocols.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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a homodyne measurement of the environment at angle θ,
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zation factor.
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noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
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properties of conditioned states [34], and in the discussion
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We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
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σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=
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#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
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#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
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σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.

PRL 113, 020407 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
11 JULY 2014

020407-2

This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
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decoherence cancellation.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system

Homodyne 
detection

System
(a)

(b) (c)

(d) (e)

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0

0 2 4 6 8 10
1.0
0.5
0.0
0.5
1.0

FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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Canceling noise without knowledge

This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt%: ð5Þ

Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt%.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H − ffiffiffi
η

p
Lyπ=2ðtÞ; ρt% þ ð1 − ηÞD½L%ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi

η
p

Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞD½L%ρt: ð7Þ

Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt% þD½L%ϱt þD½L†%ϱt: ð8Þ

The “trick” is to recognize that D½L%ρt þD½L†%ρt ¼
D½Lþ%ρt þD½L−%ρt, where L' ¼ ið1∓1Þ=2ðL' L†Þ=

ffiffiffi
2

p

are Hermitian. Thus, L' are effective coupling operators
that admit no-knowledge measurements.
Measurements of L' are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y'θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL'it þ ξ'ðtÞ, where ξ'ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L' occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-

ments is given by a straightforward generalization of Eq. (6):

∂tρt ¼ −i½H − ffiffiffi
η

p ðLþy
þ
π=2ðtÞ þ L−y−π=2ðtÞÞ; ρt%

þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð9Þ

Finally, we directly feed the measurement signals back via
H → H þ ffiffiffi

η
p ðLþy

þ
π=2ðtÞ þ L−y−π=2ðtÞÞ:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð10Þ
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by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt%: ð5Þ

Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt%.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H − ffiffiffi
η

p
Lyπ=2ðtÞ; ρt% þ ð1 − ηÞD½L%ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi

η
p

Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞD½L%ρt: ð7Þ

Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt% þD½L%ϱt þD½L†%ϱt: ð8Þ

The “trick” is to recognize that D½L%ρt þD½L†%ρt ¼
D½Lþ%ρt þD½L−%ρt, where L' ¼ ið1∓1Þ=2ðL' L†Þ=

ffiffiffi
2

p

are Hermitian. Thus, L' are effective coupling operators
that admit no-knowledge measurements.
Measurements of L' are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y'θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL'it þ ξ'ðtÞ, where ξ'ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L' occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-

ments is given by a straightforward generalization of Eq. (6):

∂tρt ¼ −i½H − ffiffiffi
η

p ðLþy
þ
π=2ðtÞ þ L−y−π=2ðtÞÞ; ρt%

þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð9Þ

Finally, we directly feed the measurement signals back via
H → H þ ffiffiffi

η
p ðLþy

þ
π=2ðtÞ þ L−y−π=2ðtÞÞ:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð10Þ
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by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt%: ð5Þ

Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt%.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H − ffiffiffi
η

p
Lyπ=2ðtÞ; ρt% þ ð1 − ηÞD½L%ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi

η
p

Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞD½L%ρt: ð7Þ

Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt% þD½L%ϱt þD½L†%ϱt: ð8Þ

The “trick” is to recognize that D½L%ρt þD½L†%ρt ¼
D½Lþ%ρt þD½L−%ρt, where L' ¼ ið1∓1Þ=2ðL' L†Þ=

ffiffiffi
2

p

are Hermitian. Thus, L' are effective coupling operators
that admit no-knowledge measurements.
Measurements of L' are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y'θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL'it þ ξ'ðtÞ, where ξ'ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L' occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-

ments is given by a straightforward generalization of Eq. (6):

∂tρt ¼ −i½H − ffiffiffi
η

p ðLþy
þ
π=2ðtÞ þ L−y−π=2ðtÞÞ; ρt%

þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð9Þ

Finally, we directly feed the measurement signals back via
H → H þ ffiffiffi

η
p ðLþy

þ
π=2ðtÞ þ L−y−π=2ðtÞÞ:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð10Þ
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt%: ð5Þ

Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt%.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H − ffiffiffi
η

p
Lyπ=2ðtÞ; ρt% þ ð1 − ηÞD½L%ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi

η
p

Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞD½L%ρt: ð7Þ

Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt% þD½L%ϱt þD½L†%ϱt: ð8Þ

The “trick” is to recognize that D½L%ρt þD½L†%ρt ¼
D½Lþ%ρt þD½L−%ρt, where L' ¼ ið1∓1Þ=2ðL' L†Þ=

ffiffiffi
2

p

are Hermitian. Thus, L' are effective coupling operators
that admit no-knowledge measurements.
Measurements of L' are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y'θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL'it þ ξ'ðtÞ, where ξ'ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L' occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-

ments is given by a straightforward generalization of Eq. (6):

∂tρt ¼ −i½H − ffiffiffi
η

p ðLþy
þ
π=2ðtÞ þ L−y−π=2ðtÞÞ; ρt%

þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð9Þ

Finally, we directly feed the measurement signals back via
H → H þ ffiffiffi

η
p ðLþy

þ
π=2ðtÞ þ L−y−π=2ðtÞÞ:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð10Þ
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Canceling noise without knowledge

by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt%: ð5Þ

Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt%.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H − ffiffiffi
η

p
Lyπ=2ðtÞ; ρt% þ ð1 − ηÞD½L%ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi

η
p

Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞD½L%ρt: ð7Þ

Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt% þD½L%ϱt þD½L†%ϱt: ð8Þ

The “trick” is to recognize that D½L%ρt þD½L†%ρt ¼
D½Lþ%ρt þD½L−%ρt, where L' ¼ ið1∓1Þ=2ðL' L†Þ=

ffiffiffi
2

p

are Hermitian. Thus, L' are effective coupling operators
that admit no-knowledge measurements.
Measurements of L' are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y'θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL'it þ ξ'ðtÞ, where ξ'ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L' occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-

ments is given by a straightforward generalization of Eq. (6):

∂tρt ¼ −i½H − ffiffiffi
η

p ðLþy
þ
π=2ðtÞ þ L−y−π=2ðtÞÞ; ρt%

þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð9Þ

Finally, we directly feed the measurement signals back via
H → H þ ffiffiffi

η
p ðLþy

þ
π=2ðtÞ þ L−y−π=2ðtÞÞ:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð10Þ
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by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt%: ð5Þ

Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt%.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H − ffiffiffi
η
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Lyπ=2ðtÞ; ρt% þ ð1 − ηÞD½L%ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi
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Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞD½L%ρt: ð7Þ

Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt% þD½L%ϱt þD½L†%ϱt: ð8Þ

The “trick” is to recognize that D½L%ρt þD½L†%ρt ¼
D½Lþ%ρt þD½L−%ρt, where L' ¼ ið1∓1Þ=2ðL' L†Þ=
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are Hermitian. Thus, L' are effective coupling operators
that admit no-knowledge measurements.
Measurements of L' are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y'θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL'it þ ξ'ðtÞ, where ξ'ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L' occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-

ments is given by a straightforward generalization of Eq. (6):

∂tρt ¼ −i½H − ffiffiffi
η

p ðLþy
þ
π=2ðtÞ þ L−y−π=2ðtÞÞ; ρt%

þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð9Þ

Finally, we directly feed the measurement signals back via
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by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt%: ð5Þ

Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt%.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H − ffiffiffi
η

p
Lyπ=2ðtÞ; ρt% þ ð1 − ηÞD½L%ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi

η
p

Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞD½L%ρt: ð7Þ

Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt% þD½L%ϱt þD½L†%ϱt: ð8Þ

The “trick” is to recognize that D½L%ρt þD½L†%ρt ¼
D½Lþ%ρt þD½L−%ρt, where L' ¼ ið1∓1Þ=2ðL' L†Þ=

ffiffiffi
2

p

are Hermitian. Thus, L' are effective coupling operators
that admit no-knowledge measurements.
Measurements of L' are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y'θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL'it þ ξ'ðtÞ, where ξ'ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L' occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-

ments is given by a straightforward generalization of Eq. (6):

∂tρt ¼ −i½H − ffiffiffi
η

p ðLþy
þ
π=2ðtÞ þ L−y−π=2ðtÞÞ; ρt%

þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð9Þ

Finally, we directly feed the measurement signals back via
H → H þ ffiffiffi

η
p ðLþy

þ
π=2ðtÞ þ L−y−π=2ðtÞÞ:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð10Þ

PRL 113, 020407 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
11 JULY 2014

020407-3

by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt%: ð5Þ

Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt%.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H − ffiffiffi
η

p
Lyπ=2ðtÞ; ρt% þ ð1 − ηÞD½L%ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi

η
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Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞD½L%ρt: ð7Þ

Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt% þD½L%ϱt þD½L†%ϱt: ð8Þ

The “trick” is to recognize that D½L%ρt þD½L†%ρt ¼
D½Lþ%ρt þD½L−%ρt, where L' ¼ ið1∓1Þ=2ðL' L†Þ=

ffiffiffi
2
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are Hermitian. Thus, L' are effective coupling operators
that admit no-knowledge measurements.
Measurements of L' are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y'θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL'it þ ξ'ðtÞ, where ξ'ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L' occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-

ments is given by a straightforward generalization of Eq. (6):

∂tρt ¼ −i½H − ffiffiffi
η

p ðLþy
þ
π=2ðtÞ þ L−y−π=2ðtÞÞ; ρt%
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Finally, we directly feed the measurement signals back via
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for non-hermitian operators•



Example: Driven qubit with dephasing

This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
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σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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Conditional expectations of system operators are calculated
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and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −
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Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.

PRL 113, 020407 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
11 JULY 2014

020407-2

This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
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and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
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where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
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where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.

PRL 113, 020407 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
11 JULY 2014

020407-2

This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
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and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]
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for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
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where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
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p
A½Leiθ#πtyθðtÞ −
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Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi
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σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=
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#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=
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2
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#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ
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σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
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zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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A
lthough the present International Sys-
tem of Units (SI, from the French Système
International d’Unités) was officially es-
tablished in 1960, its origin goes back to
the creation of the metric system during

the French Revolution. Following an idea proposed
a century earlier by John Wilkins,1 the new system
of weights and measures took as its starting point a
single universal measure—the meter—and used it
to define length, volume, and mass. The meter came
from a perceived constant of nature: one ten-
 millionth of the distance along Earth’s meridian
through Paris from the North Pole to the equator.2
Definitions for the units of volume and mass fol-
lowed, with the liter being 0.001 m3 and the kilo-
gram the mass of 1 liter of distilled water at 4 °C.
Subsequently, in 1799, two platinum artifact stan-
dards for length and mass based on those definitions
were deposited in the Archives de la République in
Paris. In the words of the Marquis de Condorcet, a
new system of measurement “for all time, for all
people” was born.

Seventy-six years later, the signing of the Meter
Convention in 1875 established three international
organizations: the General Conference on Weights
and Measures (CGPM), the International Commit-
tee for Weights and Measures (CIPM), and the In-
ternational Bureau of Weights and Measures
(BIPM). They were formally tasked with maintain-
ing the SI and continue to do so. 

The SI is a living, evolving system, changing as
new knowledge and measurement needs arise, al-
beit sometimes slowly when measured against the
rapid pace of scientific progress. For example, in the
18th and 19th centuries when natural philosophers
and scientists tried to apply the system of length,
mass, and time—with time defined by astronomical
observations—to quantify newly discovered phe-
nomena such as magnetism and electricity and the
concept of energy, they also discovered the need for
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A “no-knowledge” measurement of an open quantum system yields no information about any system
observable; it only returns noise input from the environment. Surprisingly, performing such a no-
knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge
monitoring has reversible noise, which can be canceled by directly feeding back the measurement signal.
We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum
system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not
depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general and
robust, and can operate in conjunction with any other quantum control protocol. As an application, we
show that no-knowledge feedback could be used to improve the performance of dissipative quantum
computers subjected to local loss.

DOI: 10.1103/PhysRevLett.113.020407 PACS numbers: 03.65.Yz, 03.65.Ta, 03.67.Pp, 42.50.Lc

“More signal, less noise” is the guiding philosophy of
experimental science. Increasing measurement sensitivity
is a proven strategy for pushing the frontiers of science
and technology, yielding improved knowledge and control
over nature. However, at the quantum scale physics pushes
back by imposing a fundamental limit on the signal-to-noise
ratio by virtue of Heisenberg’s uncertainty principle [1,2].
Nevertheless, “more signal, less noise” also guides the design
of protocols for the measurement and control of quantum
systems, such as squeezed state photon [3] and atom [4]
interferometry, optimal parameter estimation [5], weak
measurement [6], measurement-based feedback control
[5,7], and adaptive measurement [8]. In this Letter, we take
the unorthodox “no signal, only noise” approach, and
consider measurements that are pure noise, and therefore
give no knowledge of the quantum state whatsoever. From
a quantum control perspective, one intuitively expects
such “no-knowledge” measurements to be unworthy of
study, since robust feedback control requires at least some
(and preferably good) knowledge of the system state. On the
contrary, we show that a measurement-based feedback
protocol based on no-knowledge monitoring can be used
to remove decoherence—the bane of quantum technology—
from an arbitrary quantum system coupled to a Markovian
environment that can be monitored.
Although the “no signal, only noise” approach is unor-

thodox, it has been considered within the context of channel
correction. In Refs. [9–11], it was proven that coherence
could be recovered in a noisy channel provided the

conditional evolution was random unitary. Consequently,
complete correction is, in principle, possible for systems
with dimension d ≤ 3. Furthermore, it was proven that
measurements that returned a small amount of knowledge
(“little signal, mostly noise”) provided a good error correc-
tion strategy, and a tradeoff relation between information
extraction and correction efficacy was established [12].
Our no-knowledge feedback scheme is consistent with
these results; however, it goes several steps further as
(1) it concretely shows how decoherence can be canceled
in a system of arbitrary dimension, with arbitrary coupling to
a Markovian environment, and (2) it provides the explicit
physical description of both the measurement and the
conditional evolution via our use of the continuous quantum
measurement framework.
Attempts to mitigate decoherence have resulted in

significant successes, including the development of error
correction codes [13–16], dynamical decoupling [17],
reservoir engineering [18,19], feedback control [20–24],
and the engineering of decoherence-free subspaces [25,26].
Nevertheless, decoherence has yet to be adequately tamed.
In our proposal, decoherence is canceled by directly feeding
the no-knowledge measurement signal back into the
system, in effect turning quantum noise against itself.
The scheme only requires knowledge of the decoherence
channel to be canceled; no knowledge of the system state is
required. It is consequently effective and robust, and can be
used in conjunction with other quantum control protocols.
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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new units of measure. The likes of Carl Friedrich
Gauss, Wilhelm Weber, James Clerk Maxwell, and
Lord Kelvin, pioneers in the new science, helped to
expand the system and developed the conceptual
framework of a coherent system with base mechan-
ical units from which to create derived units as
needed. The system included clear explanations of
how to realize the base units through measurement,
and the coherent derived units were products of
powers of the base units with a prefactor of 1.

The timeline in figure 1 shows that despite nu-
merous changes, the SI still has this fundamental
framework, with 7 base units (and associated defi-
nitions for realizing them) and 22 derived units with
special names and symbols.3 However, international
consensus is building to once again advance the SI
to reflect contemporary understanding of the phys-
ical world. The new framework of the future SI will
no longer define seven base units and coherently de-
rived units; instead, it will adopt exact values for
seven fundamental constants of nature on which all
SI units will be realized. Gone are the base units and
their definitions. 

How to make a system of units
A system of units to express all physical measure-
ments must take into consideration all physical
quantities and the equations that relate those quan-
tities—namely, the accepted laws of physics. A sim-
ple example is
                     F = ma = m dv/dt = m d2x/dt2,                 (1)
where force F, mass m, acceleration a, velocity v,
length x, and time t are all quantities and the rela-

tions are Newton’s second law of motion and basic
dynamics. 

Carefully choosing a subset of independent
base quantities allows one to derive the remaining
quantities as functions of the chosen subset through
the accepted laws of physics. The selection of base
quantities is not unique; but they must be complete
and nonredundant.4 For example, if equation 1 were
all we knew about the physical world (six quanti-
ties, three constraints), choosing either force or mass
and any two of the remaining five quantities would
give us an independent set of three base quantities. 

However, we are not yet done. To fully define
the system of units, we must assign a specific refer-
ence quantity to each base quantity. The reference
quantity can be a specific artifact, as is the case for
the base quantity of mass in the present SI—the in-
ternational prototype of the kilogram (IPK). Alter-
natively, in the energy equivalence relations
                          E = hν = mc2 = eV = kT,                      (2)
the Planck constant h, the speed of light c, the ele-
mentary charge e, and the Boltzmann constant k can
also be reference quantities since they are invariants
with specific values. 

The present SI has seven base quantities: time,
length, mass, electric current, thermodynamic tem-
perature, amount of substance, and luminous inten-
sity. The specific reference quantities are the defini-
tions shown in table 1. In other words, the reference
quantities in the present SI are the definitions of the
base units: the second, meter, kilogram, ampere,
kelvin, mole, and candela.

The new SI will also have seven base quantities:
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System of units

2018
The new SI will specify the exact

values of seven fundamental constants,
shown in table 2. All SI units will be

based on those defining constants.

1983
A new definition
of the meter links
it to the speed of
light in vacuum.

1799
The metric system is born.

The Archives de la
République in Paris

receives two platinum
artifact standards

representing the meter
and kilogram.

1971
The mole becomes a
new base unit of the
SI, and the list of base
units grows to seven.

1967
The second is
redefined in terms of
the hyperfine splitting
frequency of the
cesium-133 atom.

1889
The first General

Conference on Weights
and Measures (CGPM)

approves a system of
measures with the base

units meter, kilogram,
and second.

1954
The ampere, kelvin,

and candela are
officially adopted as

base units by the
10th CGPM.

1960
The 11th CGPM adopts
the name International

System of Units (SI) with
the base units meter,

kilogram, second, ampere,
kelvin, and candela. The
meter is redefined as the
wavelength of radiation

from a specific excitation
in krypton-86.

1668
John Wilkins's essay
is published.

1875
Seventeen member nations
sign the Meter Convention.

Work begins on constructing
new international prototypes

for the meter and kilogram.

Figure 1. Evolution of the SI. A brief timeline of the history of the International System
of Units since John Wilkins’s 1668 essay is scaled to a meter bar. The photograph shows
a marble meter standard in Paris, dating from the 18th century. (Photo courtesy of
LPLT\Wikimedia Commons.)
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This demonstrates that meaningful feedback control with-
out knowledge is not only possible, but desirable.
No-knowledge measurements.—Consider a system with

Hamiltonian H that interacts with a Markovian reservoir
via the coupling operator L. The system density operator ϱt
evolves according to the master equation (ME)

∂tϱt ¼ −i½H; ϱt# þD½L#ϱt ≡ Lϱt; ð1Þ

where ∂t ≡ d=dt, D½Z#ϱt ¼ ZϱtZ† − ðZ†Zϱt þ ϱtZ†ZÞ=2,
and we have set ℏ ¼ 1. In principle, it is always possible
to indirectly extract information about the system with a
projective measurement on the reservoir. In particular, for
a homodyne measurement of the environment at angle θ,
the conditional system dynamics are described by the
Stratonovich stochastic master equation [5,27,28]

∂tρt ¼ Lρt þ
ffiffiffi
η

p
A½Leiθ#ρtyθðtÞ −

η
2
A2½Leiθ#ρt; ð2Þ

where ρt is the unnormalized conditional density operator
for the system, η is the detection efficiency, A½Z#ρt¼
ZρtþρtZ†, and A2½Z#ρt¼ZðA½Z#ρtÞþðA½Z#ρtÞZ†.
Conditional expectations of system operators are calculated
using hXit ¼ Tr½Xρt#=Tr½ρt#. The first term of Eq. (2)
corresponds to the unconditional Lindblad ME (1) and
gives the unitary dynamics due to the system Hamiltonian
and the decoherence caused by the system-reservoir
coupling. The second term is the innovations, which
conditions the system dynamics on the homodyne meas-
urement photocurrent

yθðtÞ ¼
ffiffiffi
η

p hLeiθ þ L†e−iθit þ ξðtÞ; ð3Þ

where ξðtÞ is a Stratonovich stochastic integral [29,30]. The
final term of Eq. (2) is the Stratonovich correction [31].
Equation (1) is obtained by averaging Eq. (2) over different
realizations of the measurement record, up to a normali-
zation factor.
Equation (3) shows that the measurement signal is

composed of two parts: the first term represents the knowl-
edge obtained about the system from the measurement,
whereas the second term is the corrupting quantum (white)
noise input from the reservoir. However, there exist choices
of L for which the measurement returns no information
about the system operators, which we term a no-knowledge
measurement. Specifically, whenL is Hermitian, homodyne
detection of the reservoir at angle θ ¼ π=2 is a no-
knowledge measurement, since the measurement signal
yπ=2ðtÞ ¼ ξðtÞ returns only noise. No-knowledge monitor-
ing appears in early works on continuous quantum meas-
urement as a means of obtaining simpler linear stochastic
MEs [32,33], in the investigation of the localization
properties of conditioned states [34], and in the discussion
of state estimation [35,36].

We can examine the effect of a no-knowledge measure-
ment by comparing the evolution of the underlying system
state ρt to that of the quantum filter [7,37] πt, which is the
optimal Bayesian estimate of the system state conditioned
on the measurement record [31]. The unnormalized quan-
tum filter πt evolves according to [38,39]

∂tπt ¼ Lπt þ
ffiffiffi
η

p
A½Leiθ#πtyθðtÞ −

η
2
A2½Leiθ#πt: ð4Þ

Suppose that we have the situation shown in Fig. 1(a)
(without the feedback) where the system is prepared in the
state ρ0 and evolves according to Eq. (2), while an observer,
ignorant of the underlying system state, models the system
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FIG. 1 (color online). (a) Schematic for a measurement-based
feedback control protocol. In general, information about the
system ρt is extracted by monitoring the decoherence channel L.
The optimal estimate πt is conditioned on the resulting meas-
urement signal yθðtÞ. The system is then controlled with some
feedback Hamiltonian Hfb. For our no-knowledge feedback
protocol, the feedback is simply a modulation of the no-
knowledge measurement signal. (b)–(e) Particular example of
a driven qubit undergoing dephasing with H ¼ Ωσx, L ¼ ffiffiffi

γ
p

σz,
and Ω=γ ¼ 1. (b),(c) Conditional trajectories for hσyic when the
channel is being monitored (no feedback) with perfect homodyne
detection at angles θ ¼ 4π=5 and π=2, respectively. Solid
red lines represent the dynamics starting from the underlying
initial state ρ0 ¼ ½I þ ðσx þ σyÞ=

ffiffiffi
2

p
#=2, while dashed blue

lines represent the filter evolution from the (incorrect) initial
estimate π0 ¼ ½I þ ðσx − σyÞ=

ffiffiffi
2

p
#=2. Although the estimate πt

converges to ρt in (b), in the no-knowledge case (c) ρt and πt
never converge. (d) Dephasing effect for the unmonitored
system [cf. Eq. (1)]. (e) Dephasing is canceled by directly feeding
back the no-knowledge measurement via the Hamiltonian
H ¼ Ωσx þ

ffiffiffi
γ

p
σzyπ=2ðtÞ. Despite the filter’s inaccurate estimate

of ρt, decoherence is completely removed, demonstrating that
accurate knowledge of the system is not required for effective
decoherence cancellation.
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by Eq. (4) with π0 ≠ ρ0. In general, information about the
system is extracted from the measurement signal and used
to update the observer’s estimate. This leads to a better
estimate of the system state over time, and πt converges to
ρt in finite time [Fig. 1(b)]. This is not true for a no-
knowledge measurement, since the filter is conditioned
only on noise. Then Eqs. (2) and (4) decouple, and the filter
never converges to the system state [31] [Fig. 1(c)].
Canceling reservoir noise with no knowledge.—In

classical control theory, a system-observation pair is called
unobservable if the initial system state cannot be deter-
mined from the measurement signal. A system undergoing
a no-knowledge measurement is clearly unobservable, as
neither the past nor present system state can be determined
from the measurement record. One may expect, therefore,
that this lack of knowledge renders meaningful measure-
ment-based feedback control impossible. This intuition is
incorrect. Although a no-knowledge measurement produ-
ces a signal with no dependence on any system observable,
the quantum noise that constitutes the signal is precisely the
same noise that corrupts the system state. Consequently, by
applying an appropriate feedback the no-knowledge meas-
urement signal can be used to cancel the noise corrupting
the system’s evolution.
Specifically, suppose L is Hermitian, and we make a

measurement of the no-knowledge quadrature θ ¼ π=2with
perfect efficiency η ¼ 1. Then Eq. (2) takes the simple form:

∂tρt ¼ −i½H − Lyπ=2ðtÞ; ρt%: ð5Þ

Since the dynamics due to the reservoir noise are unitary,
their effect is reversible and can be entirely canceled by
directly feeding back the measurement signal. Explicitly, by
making the replacementH → H þ Lyπ=2ðtÞ, Eq. (5) reduces
to ∂tρt ¼ −i½H; ρt%.
What is particularly interesting about no-knowledge feed-

back is that it works when the system and filter are initially
very different [see Figs. 1(d) and 1(e)]. The reason is that the
measurement signal is simply fed back via the Hamiltonian
without any prior filtering. Indeed, no-knowledge feedback
can be successfully implemented with almost no a priori
knowledge of the underlying system state or dynamics.
No-knowledge feedback only requires a correct identifica-
tion of the no-knowledge quadrature, which depends only
on the coupling operator L, and the ability to monitor this
decoherence channel. A precise description of the system
state and its unitary evolution is not required. This natural
robustness [40] gives no-knowledge feedback an advantage
over other state-dependent methods of decoherence reduc-
tion [41], particularly for systemswhere the dynamics cannot
be precisely quantified.
When the detection efficiency is imperfect, the effective-

ness of no-knowledge feedback is reduced. The evolution is
no longer purely unitary,

∂tρt ¼ −i½H − ffiffiffi
η

p
Lyπ=2ðtÞ; ρt% þ ð1 − ηÞD½L%ρt; ð6Þ

and therefore cannot be entirely canceled by feeding back
the measurement signal. Nevertheless, by choosing the no-
knowledge feedbackH→Hþ ffiffiffi

η
p

Lyπ=2ðtÞ, the decoherence
rate can be reduced by a factor of (1 − η) [cf. Eq. (1)]:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞD½L%ρt: ð7Þ

Experiments with imperfect detection efficiency can there-
fore still enjoy a significant and robust decoherence reduction
by employing no-knowledge feedback.
An analogous result exists for photodetection, where

unitary L corresponds to a no-knowledge measurement.
Noise is canceled by applying a unitary gate to the system
after the detection of a photon [31].
Removing decoherence for general L.—As formulated

above, a no-knowledge measurement is only possible when
the coupling operator is Hermitian [42]. Since physical
observables are Hermitian, direct no-knowledge measure-
ments are possible in many situations. Examples include
dephasing in qubits (L ¼ σz) [43], optomechanical devices
under position measurement (L ¼ x) [44], and mini-
mally destructive detection of Bose-Einstein condensates
[22–24,45]. However, some common coupling operators,
such as the annihilation operator a, are not Hermitian.
Fortuitously, we can still remove decoherence for a general
L via a similar measurement-based feedback scheme.
Counterintuitively, this requires an extra reservoir with
coupling operator L†, giving the unconditional dynamics

∂tϱt ¼ −i½H; ϱt% þD½L%ϱt þD½L†%ϱt: ð8Þ

The “trick” is to recognize that D½L%ρt þD½L†%ρt ¼
D½Lþ%ρt þD½L−%ρt, where L' ¼ ið1∓1Þ=2ðL' L†Þ=

ffiffiffi
2

p

are Hermitian. Thus, L' are effective coupling operators
that admit no-knowledge measurements.
Measurements of L' are possible by taking the output

channels of both reservoirs, mixing them via a 50∶50 beam
splitter, introducing a relative phase shift of π=2, and
subsequently measuring each output with homodyne detec-
tion (see Fig. 2). This yields the two measurement signals
y'θ ðtÞ ¼ 2

ffiffiffi
η

p
cos θhL'it þ ξ'ðtÞ, where ξ'ðtÞ are indepen-

dent Stratonovich noises. No-knowledge measurements of
L' occur for quadrature angle θ ¼ π=2. The beam splitting
step of the feedback protocol is vital, and has no classical
analogue, making our result a quantum feedback protocol.
The evolution of ρt under these no-knowledge measure-

ments is given by a straightforward generalization of Eq. (6):

∂tρt ¼ −i½H − ffiffiffi
η

p ðLþy
þ
π=2ðtÞ þ L−y−π=2ðtÞÞ; ρt%

þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð9Þ

Finally, we directly feed the measurement signals back via
H → H þ ffiffiffi

η
p ðLþy

þ
π=2ðtÞ þ L−y−π=2ðtÞÞ:

∂tρt ¼ −i½H; ρt% þ ð1 − ηÞðD½L%ρt þD½L†%ρtÞ: ð10Þ
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