

Jascha Ulrich, ˙ Inan¸c Adagideli, Dirk Schuricht, and Fabian Hassler

Over the years, supersymmetric quantum mechanics has evolved from a toy model of high energy physics to a field of its own. Although various examples of supersymmetric quantum mechanics have been found, systems that have a natural realization are scarce. Here, we show that the extension of the conventional Cooper-pair box by a 4π-periodic Majorana-Josephson coupling realizes supersymmetry for certain values of the ratio between the conventional Josephson and the Majorana-Josephson coupling strength. The supersymmetry we find is a "hidden" minimally bosonized supersymmetry that provides a non-trivial generalization of the supersymmetry of the free particle and relies crucially on the presence of an anomalous Josephson junction in the system. We show that the resulting degeneracy of the energy levels can be probed directly in a tunneling experiment and discuss the various transport signatures. An observation of the predicted level degeneracy would provide clear evidence for the presence of the anomalous Josephson coupling.

Phys. Rev. B 90, 075408 (2014)

イロト イ押ト イヨト イヨト

つくへ

Layout

1 [Introduction](#page-1-0)

[Majorana Cooper pair box](#page-2-0) [Supersymmetry](#page-21-0)

2 [Results](#page-31-0)

[Supersymmetry without fermion parity constraint](#page-32-0) [Hidden supersymmetry](#page-42-0)

3 [Discussion](#page-51-0)

[Particle in a box](#page-52-0) [Hidden Supersymmetry in Majorana Cooper pair box](#page-60-0)

Figure : Setup of the Majorana Cooper pair box.

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 \sim \sim

Figure : Setup of the Majorana Cooper pair box.

•
$$
H_{\gamma} = E_C(n - n_g)^2 + E_J(1 - \cos \phi) + iE_M \gamma_{0,B} \gamma_{1,A} \cos(\phi/2)
$$

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 \sim \sim

Figure : Setup of the Majorana Cooper pair box.

•
$$
H_{\gamma} = E_C(n - n_g)^2 + E_J(1 - \cos \phi) + iE_M \gamma_{0,B} \gamma_{1,A} \cos(\phi/2)
$$

•
$$
\phi = \phi_1 - \phi_0
$$
, $E_C = e^2/2C_g$, $n_g = C_g V_g/e$, $E_J = \hbar l_c/2e$

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 \sim \sim

Figure : Setup of the Majorana Cooper pair box.

•
$$
H_{\gamma} = E_C(n - n_g)^2 + E_J(1 - \cos \phi) + iE_M \gamma_{0,B} \gamma_{1,A} \cos(\phi/2)
$$

•
$$
\phi = \phi_1 - \phi_0
$$
, $E_C = e^2/2C_g$, $n_g = C_g V_g/e$, $E_J = \hbar l_c/2e$

• large grounded superconductor with zero charging energy, thus no dynamics of ϕ_0 (set to zero)

Figure : Setup of the Majorana Cooper pair box.

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 \leftarrow

Figure : Setup of the Majorana Cooper pair box.

• number of electrons $n \in \mathbb{Z}$ and $\phi_1 = \phi$ are conjugate variable

つのへ

Figure : Setup of the Majorana Cooper pair box.

- number of electrons $n \in \mathbb{Z}$ and $\phi_1 = \phi$ are conjugate variable
- $\bullet~~ [n,{e^{\pm i\phi/2}}] = \pm {e^{\pm i\phi/2}}$, add/remove one electron $\equiv e^{\pm i\phi/2}$

റെ ര

Figure : Setup of the Majorana Cooper pair box.

- number of electrons $n \in \mathbb{Z}$ and $\phi_1 = \phi$ are conjugate variable
- $\bullet~~ [n,{e^{\pm i\phi/2}}] = \pm {e^{\pm i\phi/2}}$, add/remove one electron $\equiv e^{\pm i\phi/2}$

•
$$
\{\gamma_k, \gamma_l\} = \gamma_k \gamma_l + \gamma_l \gamma_k = 2\delta_{kl}
$$

• Temperature much smaller than superconducting gap, and no additional Andreev states

- Temperature much smaller than superconducting gap, and no additional Andreev states
- • Occupation of nonlocal fermionic mode spanned by $\gamma_{1,A}, \gamma_{1,B}$ must correspond to an odd number of electrons

- Temperature much smaller than superconducting gap, and no additional Andreev states
- Occupation of nonlocal fermionic mode spanned by $\gamma_{1,A}, \gamma_{1,B}$ must correspond to an odd number of electrons

•
$$
d^{\dagger} = \frac{\gamma_{1,A} + i\gamma_{1,B}}{2}
$$
, $d = \frac{\gamma_{1,A} - i\gamma_{1,B}}{2} \Rightarrow d^{\dagger}d = \frac{1 - i\gamma_{1,A}\gamma_{1,B}}{2}$

- Temperature much smaller than superconducting gap, and no additional Andreev states
- Occupation of nonlocal fermionic mode spanned by $\gamma_{1,A}, \gamma_{1,B}$ must correspond to an odd number of electrons

•
$$
d^{\dagger} = \frac{\gamma_{1,A} + i\gamma_{1,B}}{2}
$$
, $d = \frac{\gamma_{1,A} - i\gamma_{1,B}}{2} \Rightarrow d^{\dagger}d = \frac{1 - i\gamma_{1,A}\gamma_{1,B}}{2}$

• Fermion parity constraint: $i\gamma_{1,A}\gamma_{1,B}=(-1)^n$

- Temperature much smaller than superconducting gap, and no additional Andreev states
- Occupation of nonlocal fermionic mode spanned by $\gamma_{1,A}, \gamma_{1,B}$ must correspond to an odd number of electrons

•
$$
d^{\dagger} = \frac{\gamma_{1,A} + i\gamma_{1,B}}{2}
$$
, $d = \frac{\gamma_{1,A} - i\gamma_{1,B}}{2} \Rightarrow d^{\dagger}d = \frac{1 - i\gamma_{1,A}\gamma_{1,B}}{2}$

- Fermion parity constraint: $i\gamma_{1,A}\gamma_{1,B}=(-1)^{n}$
- • This fermion parity constraint reduces the Hilbert space dimension by a factor of two

• Majorana degrees of freedom are not independent but constrained by the number operator n

- Majorana degrees of freedom are not independent but constrained by the number operator n
- Remove Majorana degrees by Jordan-Wigner transformation

$$
\gamma_{k,A} = \left(\prod_{l < k} \sigma_l^z\right) \sigma_k^x, \, \gamma_{k,B} = -\left(\prod_{l < k} \sigma_l^z\right) \sigma_k^y
$$

- Majorana degrees of freedom are not independent but constrained by the number operator n
- Remove Majorana degrees by Jordan-Wigner transformation $\gamma_{k,A}=\Big(\prod_{l< k}\,\sigma_l^z\Big)\sigma_k^{\chi},\,\gamma_{k,B}=-\Big(\prod_{l< k}\,\sigma_l^z\Big)\sigma_k^{\chi}$ k
- \bullet Majorana tunneling term becomes $E_M \sigma^{\chi}_0 \sigma^{\chi}_1 \cos(\phi/2)$
- $\bullet\,$ Unitary transformation $\mathit{U}=\prod_{k=0,1}\mathit{U}_{k}$

- Majorana degrees of freedom are not independent but constrained by the number operator n
- Remove Majorana degrees by Jordan-Wigner transformation $\gamma_{k,A}=\Big(\prod_{l< k}\,\sigma_l^z\Big)\sigma_k^{\chi},\,\gamma_{k,B}=-\Big(\prod_{l< k}\,\sigma_l^z\Big)\sigma_k^{\chi}$ k
- \bullet Majorana tunneling term becomes $E_M \sigma^{\chi}_0 \sigma^{\chi}_1 \cos(\phi/2)$
- $\bullet\,$ Unitary transformation $\mathit{U}=\prod_{k=0,1}\mathit{U}_{k}$

•
$$
U_k = e^{-i\pi\sigma_k^x n_k/2} = \cos(\pi n_k/2) - i\sigma_k^x \sin(\pi n_k/2)
$$

- Majorana degrees of freedom are not independent but constrained by the number operator n
- Remove Majorana degrees by Jordan-Wigner transformation $\gamma_{k,A}=\Big(\prod_{l< k}\,\sigma_l^z\Big)\sigma_k^{\chi},\,\gamma_{k,B}=-\Big(\prod_{l< k}\,\sigma_l^z\Big)\sigma_k^{\chi}$ k
- \bullet Majorana tunneling term becomes $E_M \sigma^{\chi}_0 \sigma^{\chi}_1 \cos(\phi/2)$
- $\bullet\,$ Unitary transformation $\mathit{U}=\prod_{k=0,1}\mathit{U}_{k}$

•
$$
U_k = e^{-i\pi\sigma_k^x n_k/2} = \cos(\pi n_k/2) - i\sigma_k^x \sin(\pi n_k/2)
$$

•
$$
H = UH_{\gamma}U^{\dagger} = \left\{ E_C(n - n_g)^2 + E_J(1 - \cos \phi) + E_M \cos(\phi/2) \right\} I
$$

- Majorana degrees of freedom are not independent but constrained by the number operator n
- Remove Majorana degrees by Jordan-Wigner transformation $\gamma_{k,A}=\Big(\prod_{l< k}\,\sigma_l^z\Big)\sigma_k^{\chi},\,\gamma_{k,B}=-\Big(\prod_{l< k}\,\sigma_l^z\Big)\sigma_k^{\chi}$ k
- \bullet Majorana tunneling term becomes $E_M \sigma^{\chi}_0 \sigma^{\chi}_1 \cos(\phi/2)$
- $\bullet\,$ Unitary transformation $\mathit{U}=\prod_{k=0,1}\mathit{U}_{k}$

•
$$
U_k = e^{-i\pi\sigma_k^x n_k/2} = \cos(\pi n_k/2) - i\sigma_k^x \sin(\pi n_k/2)
$$

• $H = UH_{\gamma}U^{\dagger} = \left\{E_{C}(n-n_{g})^{2} + E_{J}(1-\cos\phi) + E_{M}\cos(\phi/2)\right\}$

•
$$
\cos(\pi n_k)\sigma_k^z - \sin(\pi n_k)\sigma_k^y = (-1)^{n_k}
$$

Supersymmetry (SUSY) in field theories of elementary particles results in a fermion partner to every boson, and vice versa. Both partners have the same mass (synonymously, energy). The resulting pattern has one non-degenerate, zero-energy, bosonic state (the vacuum), while every other state of the spectrum is degenerate in pairs (a boson and a fermion). This is termed a SUSY spectrum. Witten extended the SUSY concept to ordinary quantum mechanics.

E. Witten, Nucl. Phys. B 188, 513 (1981)

Definition: The quantum mechanical system (H, H) is said to be supersymmetric if there exists a finite number of self-adjoint operators Q_1, \ldots, Q_n (called supercharges) as well as a self-adjoint operator K (called involution), all of which operators act on H and satisfy $\mathcal{K}^2=1,~\{{Q}_i,\mathcal{K}\}=0$ and $\{{Q}_i,{Q}_j\}=2\delta_{ij}\mathsf{H}$

 $\langle \oplus \rangle$ and $\langle \oplus \rangle$ and $\langle \oplus \rangle$

$$
\bullet\ \ \mathsf{N}{=}1\ \ \text{supersymmetry} \ \Rightarrow\ \{\mathsf{Q},\mathsf{Q}\}=2H_{\mathsf{Q}},\ \{\mathsf{Q},\mathsf{K}\}=0
$$

Jascha Ulrich, İnanç Adagideli, Dirk Schuricht, and Fabian Hassler

K ロ ▶ K @ ▶ K 할 > K 할 > | 할 | X Q Q Q

- N=1 supersymmetry \Rightarrow {Q, Q} = 2H_Q, {Q, K} = 0
- \Rightarrow conservation of K, $[H_Q, K] = 0$

- 4 重 ≯ - 4 重 ≯

- N=1 supersymmetry \Rightarrow {Q, Q} = 2H_Q, {Q, K} = 0
- \Rightarrow conservation of K, $[H_Q, K] = 0$
- \bullet Hamiltonian decomposes into eigenspaces of K according to $H_Q = P_+ H_Q P_+ + P_- H_Q P_-, P_{\pm} = \frac{1}{2}$ $\frac{1}{2}(1\pm K)$
- • H_O decomposes into direct sum of two terms that share the same spectrum up to a possibly missing ground state

- N=1 supersymmetry \Rightarrow {Q, Q} = 2H_Q, {Q, K} = 0
- \Rightarrow conservation of K, $[H_Q, K] = 0$
- \bullet Hamiltonian decomposes into eigenspaces of K according to $H_Q = P_+ H_Q P_+ + P_- H_Q P_-, P_{\pm} = \frac{1}{2}$ $\frac{1}{2}(1\pm K)$
- H_O decomposes into direct sum of two terms that share the same spectrum up to a possibly missing ground state
- • Eigenenergies are positive $E_n > 0$

- N=1 supersymmetry \Rightarrow {Q, Q} = 2H_Q, {Q, K} = 0
- \Rightarrow conservation of K, $[H_Q, K] = 0$
- \bullet Hamiltonian decomposes into eigenspaces of K according to $H_Q = P_+ H_Q P_+ + P_- H_Q P_-, P_{\pm} = \frac{1}{2}$ $\frac{1}{2}(1\pm K)$
- H_O decomposes into direct sum of two terms that share the same spectrum up to a possibly missing ground state
- Eigenenergies are positive $E_n > 0$
- Given an eigenstate $|n, +\rangle$ from the "bosonic" sector with eigenvalue $E_n>0$, the state $|n,-\rangle=Q|n,+\rangle/\sqrt{E_n}$ is an eigenvector of the "fermionic" sector with the same eigenvalue E_n .

All . . E . . E . . .

Figure : Setup of the Majorana Cooper pair box.

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 \leftarrow

Figure : Setup of the Majorana Cooper pair box.

•
$$
H = E_C(n - n_g)^2 + E_J(1 - \cos \phi) + E_M \cos(\phi/2)
$$

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 \leftarrow

Figure : Setup of the Majorana Cooper pair box.

- \bullet *H* = *E*_C(*n* − *n_g*)² + *E_J*(1 − cos ϕ) + *E_M* cos(ϕ /2)
- Showing that H is supersymmetric amounts to finding a supercharge Q and an involution K realizing the SUSY algebra

Layout

1 [Introduction](#page-1-0)

[Majorana Cooper pair box](#page-2-0) [Supersymmetry](#page-21-0)

2 [Results](#page-31-0)

[Supersymmetry without fermion parity constraint](#page-32-0) [Hidden supersymmetry](#page-42-0)

3 [Discussion](#page-51-0)

[Particle in a box](#page-52-0) [Hidden Supersymmetry in Majorana Cooper pair box](#page-60-0)

[Supersymmetry in the Majorana Cooper-Pair Box](#page-0-0)

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 \leftarrow

Figure : Setup of the Majorana Cooper pair box.

 $\bullet\;\; H_{\gamma}=E_C(n-n_g)^2+E_J(1-\cos\phi)+iE_M\gamma_{0,B}\gamma_{1,A}\cos(\phi/2)$

つくへ

Figure : Setup of the Majorana Cooper pair box.

- $\bullet\;\; H_{\gamma}=E_C(n-n_g)^2+E_J(1-\cos\phi)+iE_M\gamma_{0,B}\gamma_{1,A}\cos(\phi/2)$
- $K' = i\gamma_{0,B}\gamma_{1,A}$: the fermion parity across the Majorana junction

Figure : Setup of the Majorana Cooper pair box.

- $\bullet\;\; H_{\gamma}=E_C(n-n_g)^2+E_J(1-\cos\phi)+iE_M\gamma_{0,B}\gamma_{1,A}\cos(\phi/2)$
- $K' = i\gamma_{0,B}\gamma_{1,A}$: the fermion parity across the Majorana junction

•
$$
Q' = \sqrt{E_C} \left[(n - n_g) \gamma_{0,B} - \alpha' \sin(\phi/2) \gamma_{1,A} \right]
$$

Figure : Setup of the Majorana Cooper pair box.

- $\bullet\;\; H_{\gamma}=E_C(n-n_g)^2+E_J(1-\cos\phi)+iE_M\gamma_{0,B}\gamma_{1,A}\cos(\phi/2)$
- $K' = i\gamma_{0,B}\gamma_{1,A}$: the fermion parity across the Majorana junction
- $Q' = \sqrt{}$ $\overline{\mathcal{E}_C}\big[(n-n_{\mathcal{g}})\,\gamma_{0,\mathcal{B}}-\alpha'\sin(\phi/2)\gamma_{1,\mathcal{A}}\big]$
- \bullet α' is a free parameter

[Supersymmetry in the Majorana Cooper-Pair Box](#page-0-0)

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 \leftarrow

• The charge Q' anticommutes with the fermion parity K' across the junction.

 λ λ λ

4 0 8

- The charge Q' anticommutes with the fermion parity K' across the junction.
- • $Q'^2 = H_{\gamma}$ for the parameters $E_M = \sqrt{ }$ 2 $E_{J}E_{C}$, $n_{\rm g}=0$ and $\alpha' = \sqrt{2E_J/E_C}$.

- The charge Q' anticommutes with the fermion parity K' across the junction.
- $Q'^2 = H_{\gamma}$ for the parameters $E_M = \sqrt{ }$ 2 $E_{J}E_{C}$, $n_{\rm g}=0$ and $\alpha' = \sqrt{2E_J/E_C}$.
- • Corresponds to a supersymmetry between bosonic and fermionic sectors

- The charge Q' anticommutes with the fermion parity K' across the junction.
- $Q'^2 = H_{\gamma}$ for the parameters $E_M = \sqrt{ }$ 2 $E_{J}E_{C}$, $n_{\rm g}=0$ and $\alpha' = \sqrt{2E_J/E_C}$.
- Corresponds to a supersymmetry between bosonic and fermionic sectors
- • Cannot be realized in present system since the Majoranas are no longer an independent degree of freedom due to the fermion parity constraint ! イロト イタト イモト イモト

• For the special case $n_g = 0$, consider an operator given by the parity $K : \phi \mapsto -\phi$ of the superconducting phase difference.

つくへ

- For the special case $n_g = 0$, consider an operator given by the parity $K : \phi \mapsto -\phi$ of the superconducting phase difference.
- \bullet $Q =$ √ $\overline{E_C}\big[n-i\alpha\sin(\phi/2)\big](-1)^n$

No. 2018 No. 2018 No. 20

- For the special case $n_{\epsilon}=0$, consider an operator given by the parity $K : \phi \mapsto -\phi$ of the superconducting phase difference.
- \bullet $Q =$ √ $\overline{E_C}\big[n-i\alpha\sin(\phi/2)\big](-1)^n$
- • Again Q and K satisfy SUSY algebra

• For the special case $n_g = 0$, consider an operator given by the parity $K : \phi \mapsto -\phi$ of the superconducting phase difference.

•
$$
Q = \sqrt{E_C} [n - i\alpha \sin(\phi/2)] (-1)^n
$$

• Again Q and K satisfy SUSY algebra

•
$$
H_Q = E_C\{n^2 + \alpha \cos(\phi/2) + \frac{1}{2}\alpha^2[1 - \cos(\phi)]\}
$$

• For the special case $n_{\epsilon}=0$, consider an operator given by the parity $K : \phi \mapsto -\phi$ of the superconducting phase difference.

•
$$
Q = \sqrt{E_C} [n - i\alpha \sin(\phi/2)] (-1)^n
$$

• Again Q and K satisfy SUSY algebra

•
$$
H_Q = E_C\{n^2 + \alpha \cos(\phi/2) + \frac{1}{2}\alpha^2[1 - \cos(\phi)]\}
$$

 \bullet $H_Q = H$ for $\alpha = \sqrt{2E_J/E_C}$, $E_M =$ √ 2 E_JE_C , and $n_g=0$

• For the special case $n_g = 0$, consider an operator given by the parity $K : \phi \mapsto -\phi$ of the superconducting phase difference.

•
$$
Q = \sqrt{E_C} [n - i\alpha \sin(\phi/2)] (-1)^n
$$

• Again Q and K satisfy SUSY algebra

•
$$
H_Q = E_C\{n^2 + \alpha \cos(\phi/2) + \frac{1}{2}\alpha^2[1 - \cos(\phi)]\}
$$

- \bullet $H_Q = H$ for $\alpha = \sqrt{2E_J/E_C}$, $E_M =$ √ 2 E_JE_C , and $n_g=0$
- Given an eigenstate $|n, +\rangle$ from the "bosonic" sector with eigenvalue $E_n>0$, the state $|n,-\rangle=Q|n,+\rangle/\sqrt{E_n}$ is an eigenvector of the "fermionic" sector with the same eigenvalue E_n .

母 ▶ イヨ ▶ イヨ ▶ │

• This supersymmetry leads to a degeneracy of the spectrum (apart from the ground state) which holds even in the nonperturbative regime of arbitrary E_J/E_C .

- This supersymmetry leads to a degeneracy of the spectrum (apart from the ground state) which holds even in the nonperturbative regime of arbitrary E_I / E_C .
- • While the supersymmetry presented here does not depend on the presence of fermionic degrees of freedom in the system, it relies crucially on the presence of an anomalous Josephson junction in addition to a conventional Josephson junction.

- This supersymmetry leads to a degeneracy of the spectrum (apart from the ground state) which holds even in the nonperturbative regime of arbitrary E_J/E_C .
- While the supersymmetry presented here does not depend on the presence of fermionic degrees of freedom in the system, it relies crucially on the presence of an anomalous Josephson junction in addition to a conventional Josephson junction.
- In this sense it provides a clear signature of the Majorana-induced 4π -periodic Josephson relation.

伊 ト イヨ ト イヨ ト

Layout

1 [Introduction](#page-1-0)

[Majorana Cooper pair box](#page-2-0) [Supersymmetry](#page-21-0)

2 [Results](#page-31-0)

[Supersymmetry without fermion parity constraint](#page-32-0) [Hidden supersymmetry](#page-42-0)

3 [Discussion](#page-51-0)

[Particle in a box](#page-52-0) [Hidden Supersymmetry in Majorana Cooper pair box](#page-60-0)

Figure :
$$
\hbar = 2m = 1
$$
, $E_n = 1^2, 2^2, 3^2, \cdots$

M. Combescure, F. Gieres, and M. Kibler, J. Phys. A 37, 10385 (2004), F. Cooper, A. Khare, and U. Sukhatme,

Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001). 299 \Box 石

[Supersymmetry in the Majorana Cooper-Pair Box](#page-0-0)

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 $x=0$

• Infinite square well potential (V=0 and L= π) and its supersymmetric partner potential $2{\rm cosec}^2({\sf x})$

 $x=0$ $x=\pi$

Sin(x)

 $1 \leq$

M. Combescure, F. Gieres, and M. Kibler, J. Phys. A 37, 10385 (2004), F. Cooper, A. Khare, and U. Sukhatme,

Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001). 一个问 QQ

[Supersymmetry in the Majorana Cooper-Pair Box](#page-0-0)

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 $x = \pi$

4

- Infinite square well potential (V=0 and L= π) and its supersymmetric partner potential $2{\rm cosec}^2({\sf x})$
- Supersymmetric states have opposite parity

4

M. Combescure, F. Gieres, and M. Kibler, J. Phys. A 37, 10385 (2004), F. Cooper, A. Khare, and U. Sukhatme,

Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001). \overline{a} QQ

[Supersymmetry in the Majorana Cooper-Pair Box](#page-0-0)

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 $x=0$

4

- Infinite square well potential (V=0 and L= π) and its supersymmetric partner potential $2{\rm cosec}^2({\sf x})$
- Supersymmetric states have opposite parity

 $x=0$ $x=\pi$

Sin(x) $\text{Sin}(2x)$

 $1 \leq$ 4

• Unique ground state with even parity

M. Combescure, F. Gieres, and M. Kibler, J. Phys. A 37, 10385 (2004), F. Cooper, A. Khare, and U. Sukhatme,

Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001). \leftarrow \leftarrow \leftarrow \leftarrow QQ

[Supersymmetry in the Majorana Cooper-Pair Box](#page-0-0)

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 $x = \pi$

 $\sin^2(x) \searrow$

Figure :
$$
\hbar = 2m = 1
$$
, $E_n = 1^2, 2^2, 3^2, \cdots$

M. Combescure, F. Gieres, and M. Kibler, J. Phys. A 37, 10385 (2004), F. Cooper, A. Khare, and U. Sukhatme,

Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001). 299 \Box

[Supersymmetry in the Majorana Cooper-Pair Box](#page-0-0)

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 $x=0$

• Discrete SUSY spectra evolves as $L \to \infty$

 $x=0$ $x=\pi$

Sin(x)

 $1 \leq$

M. Combescure, F. Gieres, and M. Kibler, J. Phys. A 37, 10385 (2004), F. Cooper, A. Khare, and U. Sukhatme,

Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001). QQ \overline{a}

[Supersymmetry in the Majorana Cooper-Pair Box](#page-0-0)

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

 $x = \pi$

Figure :
$$
\hbar = 2m = 1
$$
, $E_n = 1^2, 2^2, 3^2, \cdots$

- Discrete SUSY spectra evolves as $L \to \infty$
- Both potentials vanish resulting in free particle Hamiltonian

M. Combescure, F. Gieres, and M. Kibler, J. Phys. A 37, 10385 (2004), F. Cooper, A. Khare, and U. Sukhatme,

Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001). QQ \overline{a}

[Supersymmetry in the Majorana Cooper-Pair Box](#page-0-0)

Jascha Ulrich, İnanç Adagideli, Dirk Schuricht, and Fabian Hassler

Discrete SUSY spectra evolves as $L \to \infty$

Sin(x)

 $1 \leq$

- Both potentials vanish resulting in free particle Hamiltonian
- Continuum of even and odd parity modes but unique even parity ground state

M. Combescure, F. Gieres, and M. Kibler, J. Phys. A 37, 10385 (2004), F. Cooper, A. Khare, and U. Sukhatme,

Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001). \overline{a} QQ

[Supersymmetry in the Majorana Cooper-Pair Box](#page-0-0)

Jascha Ulrich, Inanç Adagideli, Dirk Schuricht, and Fabian Hassler

Figure : Numerically calculated wave functions $\psi_{n,\pm}(\phi)$ of the Hamiltonian for $n = 0, 1, 2$ at the supersymmetric point $n_g=0$, $E_M=\sqrt{2E_JE_C}$ for different values of E_J/E_C (and thus $\alpha=\sqrt{2E_J/E_C}$). The wave functions are chosen real and are aligned at their corresponding eigenenergies. States $\psi_{n,+}(\phi)$ in the even parity sector of the superconducting phase are plotted in dark gray while the states $\psi_n(-(\phi))$ in the odd parity sector are plotted in light gray. The black line represents the underlying potential. Both the potential and the states are 4π periodic. We note that due to the supersymmetry, all levels with $n > 0$ are doubly degenerate.

Figure : Numerically calculated wave functions $\psi_{n,\pm}(\phi)$ of the Hamiltonian for $n = 0, 1, 2$ at the supersymmetric point $n_g=0$, $E_M=\sqrt{2E_JE_C}$ for different values of E_J/E_C (and thus $\alpha=\sqrt{2E_J/E_C}$). The wave functions are chosen real and are aligned at their corresponding eigenenergies. States $\psi_{n,+}(\phi)$ in the even parity sector of the superconducting phase are plotted in dark gray while the states $\psi_{n-}(\phi)$ in the odd parity sector are plotted in light gray. The black line represents the underlying potential. Both the potential and the states are 4π periodic. We note that due to the supersymmetry, all levels with $n > 0$ are doubly degenerate.

• $V = E_M \cos(\phi/2) + E_I (1 - \cos \phi)$

メロメ メ母メ メミメ メミメ

Figure : Numerically calculated wave functions $\psi_{n,\pm}(\phi)$ of the Hamiltonian for $n = 0, 1, 2$ at the supersymmetric point $n_g=0$, $E_M=\sqrt{2E_JE_C}$ for different values of E_J/E_C (and thus $\alpha=\sqrt{2E_J/E_C}$). The wave functions are chosen real and are aligned at their corresponding eigenenergies. States $\psi_{n,+}(\phi)$ in the even parity sector of the superconducting phase are plotted in dark gray while the states $\psi_{n-}(\phi)$ in the odd parity sector are plotted in light gray. The black line represents the underlying potential. Both the potential and the states are 4π periodic. We note that due to the supersymmetry, all levels with $n > 0$ are doubly degenerate.

- $V = E_M \cos(\phi/2) + E_I (1 \cos \phi)$
- For $\alpha \to \infty$ the states are well localized close to the minima at $\phi \in 2\pi \mathbb{Z}$

イロメ イ母メ イヨメ イヨメ

つくへ

Figure : Numerically calculated wave functions

 \rightarrow \equiv \rightarrow \rightarrow \equiv

 290

∍

Kロト K同

Figure : Numerically calculated wave functions

 $\bullet\,$ Close to $\phi=2\pi$, we have $\mathcal{V}_{2\pi}\approx -\mathcal{E}_\mathcal{M}+\frac{1}{2}\mathcal{E}$ $\approx -E_M + \frac{1}{2}E_J(\phi - 2\pi)^2$ with the spectrum $E_{2\pi,n}=-E_M+\sqrt{8E_C E_J}(n+\frac{1}{2})$ $\frac{1}{2}$).

A & Y B & Y B &

4 17 18

Figure : Numerically calculated wave functions

- $\bullet\,$ Close to $\phi=2\pi$, we have $\mathcal{V}_{2\pi}\approx -\mathcal{E}_\mathcal{M}+\frac{1}{2}\mathcal{E}$ $\approx -E_M + \frac{1}{2}E_J(\phi - 2\pi)^2$ with the spectrum $E_{2\pi,n}=-E_M+\sqrt{8E_C E_J}(n+\frac{1}{2})$ $\frac{1}{2}$).
- In the second mimimum, at ϕ close to zero, we have $V_0 \approx E_M + \frac{1}{2}$ $\frac{1}{2}E_J\phi^2$ which leads to the approximate spectrum $E_{0,n} = E_M + \sqrt{8E_C E_J} (n + \frac{1}{2})$ $rac{1}{2}$

 \mathcal{A} and \mathcal{A} in the set of \mathbb{R}^n is a set of \mathbb{R}^n is

Figure : Numerically calculated wave functions

- $\bullet\,$ Close to $\phi=2\pi$, we have $\mathcal{V}_{2\pi}\approx -\mathcal{E}_\mathcal{M}+\frac{1}{2}\mathcal{E}$ $\approx -E_M + \frac{1}{2}E_J(\phi - 2\pi)^2$ with the spectrum $E_{2\pi,n}=-E_M+\sqrt{8E_C E_J}(n+\frac{1}{2})$ $\frac{1}{2}$).
- In the second mimimum, at ϕ close to zero, we have $V_0 \approx E_M + \frac{1}{2}$ $\frac{1}{2}E_J\phi^2$ which leads to the approximate spectrum $E_{0,n} = E_M + \sqrt{8E_C E_J} (n + \frac{1}{2})$ $rac{1}{2}$ √
- $\bullet\,$ At the supersymmetric point $(E_M =$ $\overline{2E_JE_C}$, $n_{\overline{g}}=0$), we [o](#page-63-0)bse[r](#page-66-0)ve the dege[n](#page-67-0)eracy $E_{2\pi,n+1} = E_{0,n}$ $E_{2\pi,n+1} = E_{0,n}$ $E_{2\pi,n+1} = E_{0,n}$ [va](#page-65-0)l[id](#page-67-0) [f](#page-62-0)or $n \geq 0$ [.](#page-50-0)

• It is a highly nontrivial fact that the degeneracy found in the analysis for $\alpha \to \infty$ remains intact for finite α where next order terms in the expansion of V as well as tunneling events described by instantons have to been taken into account.

- It is a highly nontrivial fact that the degeneracy found in the analysis for $\alpha \to \infty$ remains intact for finite α where next order terms in the expansion of V as well as tunneling events described by instantons have to been taken into account.
- • The degeneracies of the whole spectrum (except for the ground state) arising in this model at the supersymmetric point can be directly probed by a tunneling experiment.