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Schrödinger term 
Describes an electron  
with effective mass m 

Bychkov-Rashba Hamiltonian 
Describes massless Dirac fermions 
that move with a Fermi velocity vF 

Correction 
Breaks particle-hole symmetry! 

Dominant term 
Dirac-like spectrum 
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The helical surface states can be described by the Hamiltonian  

Schrödinger term 
Describes an electron  
with effective mass m 

Bychkov-Rashba Hamiltonian 
Describes massless Dirac fermions 
that move with a Fermi velocity vF 

Spectrum and spin arrangement confirmed via 
angle-resolved photoemission spectroscopy 

Chen et al., Science (2009) 
Hsieh et al., Nature (2009) 
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Spectrum with dominant 
Schrödinger term for comparison:  

Pure Dirac cones 
(e.g., graphene) 

Dirac-like cones 
of a topological 
insulator 

(relevant, e.g., for semiconductors) 

Pure Schrödinger 
dispersion 

Spectrum with 
Rashba spin-orbit 
interaction 

Appropriate 
cutoffs are 
important!  
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Magnetic vector potential: 
(Landau gauge)  

B = B ez 

Substitution: 
electron charge 

The Zeeman term is omitted because it was found 
to be negligible for the phenomena of interest in 
this paper [see Wang et al., PRB (2010)] 
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Landau Levels 

N ≥ 0: Landau level index 

s = +1: conduction band 
s = -1: valence band 

Magnetic coherence length 



Grand Thermodynamic Potential 

Magnetization M(T, μ) is given by the derivative of the grand thermodynamic 
potential Ω(T, μ) with respect to B at fixed chemical potential μ   



Grand Thermodynamic Potential 

Magnetization M(T, μ) is given by the derivative of the grand thermodynamic 
potential Ω(T, μ) with respect to B at fixed chemical potential μ   

For the Dirac-like spectra, the authors use 

Chemical potential times 
total number of states 

Constant that depends on μ 
but not on B 

Usual non-relativistic grand potential 

N(ω): Density of states 
Not to be confused with Landau level index N 
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Zero Temperature Limit 

Density of states: 

T = 0 

Graphene (E0 = 0): 

Topological insulator: 



Zero Temperature Limit 

Density of states: 

Depends on B but not on μ 

T = 0 

Graphene (E0 = 0): 

Topological insulator: 

Vacuum contribution 
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Magnetization and Hall Conductivity 

Result for a topological insulator when the vacuum contribution is omitted: 

This equation is used by the authors to derive the magnetization M(μ) 

Recall: 

The Hall conductivity σH is related to the slope of the magnetization via the 
Streda formula:  

Important result:  
Hall conductivity σH is quantized in half-integer values of e2/h, 
even in the presence of a Schrödinger term  
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Dirac term only: With small Schrödinger term: 
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Dirac term only: 
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Magnetization and Hall Conductivity 

Dirac term only: 

With small 
Schrödinger term: 

The circles mark the positions 
of the Landau levels 

Landau levels with index N: 



Comparison with Schrödinger Limit 

Landau levels with index N: 

T = 0 



Comparison with Schrödinger Limit 

When the relativistic term is absent, the Landau levels evolve linearly with B. 
Furthermore, there are degeneracies and the Hall plateaus have even-integer 
values of e2/h only. 

In the presence of a relativistic term, the degeneracies are lifted due to 
corrections of type  

Lifting of the Landau level degeneracy results in Hall plateaus at integer values 
of e2/h 



Comparison with Schrödinger Limit 

The circles mark the positions 
of the Landau levels 

Landau levels with index N: 



Magnetic Oscillations 

The authors also investigate the oscillating part of the magnetization 



Magnetic Oscillations 

The authors also investigate the oscillating part of the magnetization 

The density of states 

can be rewritten as 

... (long calculation) ... 
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The authors also investigate the oscillating part of the magnetization 

In the regime of small B they find   

Area of cyclotron orbit Phase shift linear in B  

but very small for typical values 



Magnetic Oscillations 

The authors also investigate the oscillating part of the magnetization 

In the regime of small B they find   

Area of cyclotron orbit Phase shift linear in B  

but very small for typical values 

Results consistent with 
the pure Dirac limit 

(m→∞) 



Line Broadening due to Impurities 

Landau level broadening due to impurities is taken into account via 
convolution with a scattering function 

Previous result 
with μ = ω 

Scattering function: 



Line Broadening due to Impurities 

Landau level broadening due to impurities is taken into account via 
convolution with a scattering function 

Dingle factor 



Line Broadening due to Temperature 

An analogous calculation can be carried out for 
the line broadening due to nonzero temperature 

Temperature factor 



Summary and Conclusions 

• Magnetization and Hall conductivity were calculated for the helical states that 
exist at the surface of a topological insulator 

 



Summary and Conclusions 

• Magnetization and Hall conductivity were calculated for the helical states that 
exist at the surface of a topological insulator 

 

• Corrections due to a Schrödinger term were taken into account, and the 
opposite regime of a dominant Schrödinger term with a weaker Rashba term 
(e.g., semiconductors) was studied for comparison 

 



Summary and Conclusions 

• Magnetization and Hall conductivity were calculated for the helical states that 
exist at the surface of a topological insulator 

 

• Corrections due to a Schrödinger term were taken into account, and the 
opposite regime of a dominant Schrödinger term with a weaker Rashba term 
(e.g., semiconductors) was studied for comparison 

 

• For a Dirac-type spectrum, the Schrödinger term only leads to quantitative shifts 
of the sawtooth oscillations obtained for the magnetization as a function of the 
chemical potential, and the Hall plateaus remain quantized at half-integer 
multiples of e2/h    

 



Summary and Conclusions 

• Magnetization and Hall conductivity were calculated for the helical states that 
exist at the surface of a topological insulator 

 

• Corrections due to a Schrödinger term were taken into account, and the 
opposite regime of a dominant Schrödinger term with a weaker Rashba term 
(e.g., semiconductors) was studied for comparison 

 

• For a Dirac-type spectrum, the Schrödinger term only leads to quantitative shifts 
of the sawtooth oscillations obtained for the magnetization as a function of the 
chemical potential, and the Hall plateaus remain quantized at half-integer 
multiples of e2/h    

 

• For a Schrödinger-type spectrum, the Rashba term lifts the Landau level 
degeneracy and Hall plateaus are found at integer values of e2/h  

 



Summary and Conclusions 

• Magnetization and Hall conductivity were calculated for the helical states that 
exist at the surface of a topological insulator 

 

• Corrections due to a Schrödinger term were taken into account, and the 
opposite regime of a dominant Schrödinger term with a weaker Rashba term 
(e.g., semiconductors) was studied for comparison 

 

• For a Dirac-type spectrum, the Schrödinger term only leads to quantitative shifts 
of the sawtooth oscillations obtained for the magnetization as a function of the 
chemical potential, and the Hall plateaus remain quantized at half-integer 
multiples of e2/h    

 

• For a Schrödinger-type spectrum, the Rashba term lifts the Landau level 
degeneracy and Hall plateaus are found at integer values of e2/h  

 

• In the Dirac-like regime, the oscillating parts of the magnetization were analyzed 
in detail, and corrections to the pure Dirac case were found 

 



Summary and Conclusions 

• Magnetization and Hall conductivity were calculated for the helical states that 
exist at the surface of a topological insulator 

 

• Corrections due to a Schrödinger term were taken into account, and the 
opposite regime of a dominant Schrödinger term with a weaker Rashba term 
(e.g., semiconductors) was studied for comparison 

 

• For a Dirac-type spectrum, the Schrödinger term only leads to quantitative shifts 
of the sawtooth oscillations obtained for the magnetization as a function of the 
chemical potential, and the Hall plateaus remain quantized at half-integer 
multiples of e2/h    

 

• For a Schrödinger-type spectrum, the Rashba term lifts the Landau level 
degeneracy and Hall plateaus are found at integer values of e2/h  

 

• In the Dirac-like regime, the oscillating parts of the magnetization were analyzed 
in detail, and corrections to the pure Dirac case were found 

 

• Level broadening due to impurities and nonzero temperature was considered 
 



Summary and Conclusions 

• Magnetization and Hall conductivity were calculated for the helical states that 
exist at the surface of a topological insulator 

 

• Corrections due to a Schrödinger term were taken into account, and the 
opposite regime of a dominant Schrödinger term with a weaker Rashba term 
(e.g., semiconductors) was studied for comparison 

 

• For a Dirac-type spectrum, the Schrödinger term only leads to quantitative shifts 
of the sawtooth oscillations obtained for the magnetization as a function of the 
chemical potential, and the Hall plateaus remain quantized at half-integer 
multiples of e2/h    

 

• For a Schrödinger-type spectrum, the Rashba term lifts the Landau level 
degeneracy and Hall plateaus are found at integer values of e2/h  

 

• In the Dirac-like regime, the oscillating parts of the magnetization were analyzed 
in detail, and corrections to the pure Dirac case were found 

 

• Level broadening due to impurities and nonzero temperature was considered 
 

• In the absence of the Schrödinger term, the derived expressions converge to 
known results for the pure Dirac case   e.g., Sharapov/Gusynin/Beck, PRB (2004) 


