Braiding statistics of loop excitations in 3D by Chenjie Wang and Michael Levin (PRL 113, 080403 (2014))

Constantin Schrade

University of Basel

Braiding statistics in 2D

= Part of θ_{12} , U_{12} that only depends on the topology of the path γ

2 $/1$ Abelian Anyons $\Psi(1, 2) \mapsto e^{i\theta_{12}} \Psi(1, 2)$ Non-Abelian Anyons $\vec{\Psi}(1,2) \mapsto U_{12} \vec{\Psi}(1,2)$ γ

Braiding statistics in 2D

= Part of θ_{12} , U_{12} that only depends on the topology of the path γ

2 $/1$ Abelian Anyons $\Psi(1, 2) \mapsto e^{i\theta_{12}} \Psi(1, 2)$ Non-Abelian Anyons $\vec{\Psi}(1,2) \mapsto U_{12} \vec{\Psi}(1,2)$ γ

Braiding statistics in 3D Point-like particles have trivial braiding statistics in 3D!

Braiding statistics in 2D

= Part of θ_{12} , U_{12} that only depends on the topology of the path γ

2 $/1$ Abelian Anyons $\Psi(1, 2) \mapsto e^{i\theta_{12}} \Psi(1, 2)$ Non-Abelian Anyons $\vec{\Psi}(1,2) \mapsto U_{12} \vec{\Psi}(1,2)$ γ

Braiding statistics in 3D

3D systems can have loop excitations with non-trivial braiding!

Symmetry Protected Topological (SPT) Order:

1. Gapped quantum many body system with some symmetry G

- 1. Gapped quantum many body system with some symmetry G
- 2. No fractional statistics in the bulk of the system.

- 1. Gapped quantum many body system with some symmetry G
- 2. No fractional statistics in the bulk of the system.
- 3. Symmetry protected edge modes

- 1. Gapped quantum many body system with some symmetry G
- 2. No fractional statistics in the bulk of the system.
- 3. Symmetry protected edge modes
- 4. Classified by the mathematical tool of group cohomology.

Symmetry Protected Topological (SPT) Order:

- 1. Gapped quantum many body system with some symmetry G
- 2. No fractional statistics in the bulk of the system.
- 3. Symmetry protected edge modes
- 4. Classified by the mathematical tool of group cohomology.

Example: 2D Topological Insulator ($G = T \times U(1)$)

Symmetry Protected Topological (SPT) Order:

- 1. Gapped quantum many body system with some symmetry G
- 2. No fractional statistics in the bulk of the system.
- 3. Symmetry protected edge modes
- 4. Classified by the mathematical tool of group cohomology.

Example: 2D Topological Insulator ($G = T \times U(1)$)

Characterization of 2D SPT phases

Characterization of 2D SPT phases

Characterization of 2D SPT phases

Different 2D SPT phases with the same symmetry G correspond to different emergent braiding statistics of quasiparticles.

Characterization of 2D SPT phases

Different 2D SPT phases with the same symmetry G correspond to different emergent braiding statistics of quasiparticles.

Characterization of 3D SPT phases

Characterization of 2D SPT phases

Different 2D SPT phases with the same symmetry G correspond to different emergent braiding statistics of quasiparticles.

Characterization of 3D SPT phases

Characterization of 2D SPT phases

Different 2D SPT phases with the same symmetry G correspond to different emergent braiding statistics of quasiparticles.

Characterization of 3D SPT phases

Different 3D SPT phases with the same symmetry G correspond to different emergent three-loop braiding statistics.

Outline

[Emergent braiding statistics in 2D SPT Order](#page-20-0) \mathbb{Z}_2 [Symmetry Protected Topological Order](#page-20-0) [Gauging the](#page-32-0) \mathbb{Z}_2 symmetry [Emergent braiding statistics of quasiparticle excitations](#page-42-0)

[Emergent braiding statistics in 3D SPT Order](#page-44-0) [Extending the results to 3D SPT phases](#page-44-0) [Braiding statitics of particles and loops](#page-50-0) [Three loop braiding statistics](#page-54-0)

How do we physically characterize different 2D SPT phases?

"Trivial" Paramagnet "Topological" Paramagnet

 \mathbb{Z}_2 – Symmetry = $\prod \sigma_p^x$ = Global Spin Flip p

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Trivial" Paramagnet: $H_0 = -\sum_{\rho} \sigma^{\chi}_{\rho}$ with $\left[\sigma^{\chi}_{\rho},\sigma^{\chi}_{\rho'}\right] = 0$, $(\sigma^{\chi}_{\rho})^2$ =1.

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Trivial" Paramagnet: $H_0 = -\sum_{\rho} \sigma^{\chi}_{\rho}$ with $\left[\sigma^{\chi}_{\rho},\sigma^{\chi}_{\rho'}\right] = 0$, $(\sigma^{\chi}_{\rho})^2$ =1. Groundstate: $|\Psi_0\rangle = \left| \sigma^x_{p} \equiv 1 \right\rangle$

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Trivial" Paramagnet: $H_0 = -\sum_{\rho} \sigma^{\chi}_{\rho}$ with $\left[\sigma^{\chi}_{\rho},\sigma^{\chi}_{\rho'}\right] = 0$, $(\sigma^{\chi}_{\rho})^2$ =1. Groundstate: $|\Psi_0\rangle = \left| \sigma^x_{p} \equiv 1 \right\rangle$

$$
|\Psi_0\rangle \propto \frac{1}{2} \prod_p (1 + \sigma_p^x) |\text{All } \uparrow\rangle \propto (1 + \sum_p \sigma_p^x + \sum_{p, p'} \sigma_p^x \sigma_{p'}^x + ...)|\text{All } \uparrow\rangle
$$

$$
\propto + \sqrt{\sum_{p} \sum_{p} \sigma_p^x + \sum_{p, p'} \sigma_{p'}^x + ...}
$$

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Trivial" Paramagnet: $H_0 = -\sum_{\rho} \sigma^{\chi}_{\rho}$ with $\left[\sigma^{\chi}_{\rho},\sigma^{\chi}_{\rho'}\right] = 0$, $(\sigma^{\chi}_{\rho})^2$ =1. Groundstate: $|\Psi_0\rangle = \left| \sigma^x_{p} \equiv 1 \right\rangle$

The ground state is unique and so there is no SSB!

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Topological" Paramagnet: $H_1 = -\sum_{p} B_p \quad [B_p, B_{p'}] = 0$, $B_p^2 = 1$.

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Topological" Paramagnet: $H_1 = -\sum_{p} B_p \quad [B_p, B_{p'}] = 0$, $B_p^2 = 1$. Groundstate: $|\Psi_1\rangle = |B_{\rho} \equiv 1\rangle$

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Topological" Paramagnet: $H_1 = -\sum_{p} B_p \quad [B_p, B_{p'}] = 0$, $B_p^2 = 1$. Groundstate: $|\Psi_1\rangle = |B_{p} \equiv 1\rangle$

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Topological" Paramagnet: $H_1 = -\sum_{p} B_p \quad [B_p, B_{p'}] = 0$, $B_p^2 = 1$. Groundstate: $|\Psi_1\rangle = |B_{p} \equiv 1\rangle$

The ground state is unique and so there is no SSB!

1. Introduce Hilbert spaces and gauge fields $\mu_{\rho q}^z$ on the links

1. Introduce Hilbert spaces and gauge fields $\mu_{\rho q}^z$ on the links

 $\mu_{qq'}^z \qquad \mu_{pq} |1/pq = |+1/pq \ \mu_{pq}^z |-1\rangle_{pq} = -|-1\rangle_{pq}$ $\mu_{pq}^z |1\rangle_{pq} = |+1\rangle_{pq}$

1. Introduce Hilbert spaces and gauge fields $\mu_{\rho q}^z$ on the links

 $\mu_{qq'}^z \qquad \mu_{pq} |1/pq = |+1/pq \ \mu_{pq}^z |-1\rangle_{pq} = -|-1\rangle_{pq}$ $\mu_{pq}^z |1\rangle_{pq} = |+1\rangle_{pq}$

2. Define "physical" Hilbert space

1. Introduce Hilbert spaces and gauge fields $\mu_{\rho q}^z$ on the links

$$
\mu_{pq}^z |1\rangle_{pq} = | + 1\rangle_{pq}
$$

$$
\mu_{pq}^z | - 1\rangle_{pq} = -|-1\rangle_{pq}
$$

2. Define "physical" Hilbert space

$$
\{ \begin{array}{c} |\Psi\rangle \mid \sigma_p^x \prod_q \mu_{pq}^x |\Psi\rangle = |\Psi\rangle \end{array} \} \; \text{''} = \text{''} \; \; \overbrace{\text{''}}{\text{''}} \; \;
$$

1. Introduce Hilbert spaces and gauge fields $\mu_{\rho q}^z$ on the links

$$
\mu_{pq}^z |1\rangle_{pq} = | + 1\rangle_{pq}
$$

$$
\mu_{pq}^z | - 1\rangle_{pq} = -|-1\rangle_{pq}
$$

2. Define "physical" Hilbert space

$$
\{ \begin{array}{c} |\Psi\rangle \mid \sigma_p^x \prod_q \mu_{pq}^x |\Psi\rangle = |\Psi\rangle \end{array} \} \; \text{''} = \text{''} \; \; \overbrace{\text{''}}{\text{''}} \; \;
$$

3. Define the new (gauge-invariant) Hamiltonian

3. Define the new (gauge-invariant) Hamiltonian

$$
H_0' = -\sum_{p} \sigma_p^{\times} \Pi_p - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}
$$

$$
H_1' = -\sum_{p} \widetilde{B}_p \Pi_p - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}
$$

3. Define the new (gauge-invariant) Hamiltonian

$$
H_0' = -\sum_{p} \sigma_p^{\times} \Pi_p - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}
$$

$$
H_1' = -\sum_{p} \widetilde{B}_p \Pi_p - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}
$$

Replace Operators $O(\sigma_q^z \sigma_{q'}^z) \rightarrow \widetilde{O}(\sigma_q^z \mu_{qq'}^z \sigma_{q'}^z)$

3. Define the new (gauge-invariant) Hamiltonian

$$
H_0' = -\sum_{p} \sigma_p^{\times} \Pi_p - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}
$$

$$
H_1' = -\sum_{p} \widetilde{B}_p \Pi_p - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}
$$

Replace Operators $O(\sigma_q^z \sigma_{q'}^z) \rightarrow \widetilde{O}(\sigma_q^z \mu_{qq'}^z \sigma_{q'}^z)$

 $\Pi_{\boldsymbol{\mathcal{p}}}=\frac{1}{2}$ $\frac{1}{2}\prod_{\langle pqr\rangle}(1+\mu_{pq}^z\mu_{qr}^z\mu_{rp}^z)$ projects on states with "zero flux" through the adjoining triangles.

3. Define the new (gauge-invariant) Hamiltonian

$$
H_0' = -\sum_{p} \sigma_p^{\times} \Pi_p - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}
$$

$$
H_1' = -\sum_{p} \widetilde{B}_p \Pi_p - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}
$$

Replace Operators $O(\sigma_q^z \sigma_{q'}^z) \rightarrow \widetilde{O}(\sigma_q^z \mu_{qq'}^z \sigma_{q'}^z)$

 $\Pi_{\boldsymbol{\mathcal{p}}}=\frac{1}{2}$ $\frac{1}{2}\prod_{\langle pqr\rangle}(1+\mu_{pq}^z\mu_{qr}^z\mu_{rp}^z)$ projects on states with "zero flux" through the adjoining triangles.

Ensure that "zero flux" states have the lowest energy.

Emergent braiding statistics

$$
H'_{0} = -\sum_{p} \sigma_{p}^{x} \Pi_{p} - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z} \quad H'_{1} = -\sum_{p} \widetilde{B}_{p} \Pi_{p} - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}
$$

" π -flux" excitation
=Triangle with $\mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z} = -1$
They are created at the end of strings V_{γ}
String operator algebra: $V_{\beta}^{0} V_{\gamma}^{0} = V_{\gamma}^{0} V_{\beta}^{0}$ (for H'_{0})

 $V_\beta^1 V_\gamma^1 = -V_\gamma^1 V_\beta^1$ (for H_1')

Emergent braiding statistics

The string algebra fixes the braiding statistics of π -flux excitations!

For $H'_0: \quad \theta = 0, \pi \to \pi$ -fluxes are bosons or fermions For $H'_1: \quad \theta = \pm \frac{\pi}{2} \rightarrow \pi$ -fluxes are "semions"

This result provides a physical distinction between the two paramagnets!

Outline

[Emergent braiding statistics in 2D SPT Order](#page-20-0) \mathbb{Z}_2 [Symmetry Protected Topological Order](#page-20-0) [Gauging the](#page-32-0) \mathbb{Z}_2 symmetry [Emergent braiding statistics of quasiparticle excitations](#page-42-0)

[Emergent braiding statistics in 3D SPT Order](#page-44-0) [Extending the results to 3D SPT phases](#page-44-0) [Braiding statitics of particles and loops](#page-50-0) [Three loop braiding statistics](#page-54-0)

How do we physically characterize different 3D SPT phases?

1. Write down a 3D spin-model with symmetry group $(\mathbb{Z}_N)^K.$

- 1. Write down a 3D spin-model with symmetry group $(\mathbb{Z}_N)^K.$
- 2. Gauge the symmetry.

- 1. Write down a 3D spin-model with symmetry group $(\mathbb{Z}_N)^K.$
- 2. Gauge the symmetry.
- 3. The excitations are

q q q q q q q q q q q $q \bullet q$

Charges Vortex Loops

- 1. Write down a 3D spin-model with symmetry group $(\mathbb{Z}_N)^K.$
- 2. Gauge the symmetry.
- 3. The excitations are

q q q q q q q q q q q $q \bullet q$

Charges Vortex Loops

 $q = (q_1, ..., q_K)$ $q_i \in \{0, ..., N-1\}$ $\phi = (\phi_1, ..., \phi_K)$ $\phi_i \in \frac{2\pi}{N} \ell$ $q = (q_1, ..., q_K)$ $q_i \in \{0, ..., N - 1\}$ Gauge flux Gauge charge Gauge charge

4. Study the braiding statistics of the excitations.

Charge-Charge braiding: Charge-Loop braiding:

 α α β $\beta_{\alpha\beta} = q_{\alpha} \cdot \phi_{\beta} + q_{\beta} \cdot \phi_{\alpha}$

Simplifications:

1. Consider only unit flux loops.

More generic loops are obtained by "fusing" unit flux loops.

Simplifications:

1. Consider only unit flux loops.

More generic loops are obtained by "fusing" unit flux loops.

2. Consider renormalized Berry phase $\Theta_{ij,k} = N \theta_{ij,k}$

 $\Theta_{ii,k}$ is independent of the charged attached to the loop!

1.
$$
\Theta_{ij,k} = \Theta_{ji,k}
$$
 (Symmetry)

- 1. $\Theta_{ii,k} = \Theta_{ii,k}$ (Symmetry)
- 2. $\Theta_{ij,k} = \frac{2\pi}{N}$ $\frac{2\pi}{N}k$ with $k\in\mathbb{Z}$ (Quantization)

- 1. $\Theta_{ii,k} = \Theta_{ii,k}$ (Symmetry)
- 2. $\Theta_{ij,k} = \frac{2\pi}{N}$ $\frac{2\pi}{N}k$ with $k\in\mathbb{Z}$ (Quantization)
- 3. $\Theta_{ii,k} + \Theta_{ik,i} + \Theta_{ki,j} = 0$ (Jacobi identity)

\n- 1.
$$
\Theta_{ij,k} = \Theta_{ji,k}
$$
 (Symmetry)
\n- 2. $\Theta_{ij,k} = \frac{2\pi}{N}k$ with $k \in \mathbb{Z}$ (Quantization)
\n- 3. $\Theta_{ij,k} + \Theta_{jk,i} + \Theta_{ki,j} = 0$ (Jacobi identity)
\n

1. Total phase = $N\theta_{ijk}$ 2. Total phase $= q \cdot \phi_i = \frac{2\pi}{N} k$ with $k \in \mathbb{Z}$ Since $N\phi_i = 2\pi \ell \equiv 0$ with $\ell \in \mathbb{Z}$ $\Theta_{ij,k} = \frac{2\pi}{N}k$ with $k \in \mathbb{Z}$

N unit fluxes

3D Spin system with a gauged $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry:

3D Spin system with a gauged $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry:

$$
\Theta_{11,2} = -\underset{(\pi,0)}{\bigoplus}\underset{(\pi,0)}{\bigoplus} \frac{(0,\pi)}{(0,\pi)} = 0, \pi \qquad \Theta_{22,1} = -\underset{(0,\pi)}{\bigoplus}\underset{(\pi,0)}{\bigoplus} \frac{(\pi,0)}{(0,\pi)} = 0, \pi
$$

The remaining $\Theta_{ij,k}$'s are fixed by symmetry and the Jacobi identity.

3D Spin system with a gauged $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry:

$$
\Theta_{11,2} = -\underset{(\pi,0)}{\bigoplus}\underset{(\pi,0)}{\bigoplus} \frac{(0,\pi)}{\bullet}=0,\pi \qquad \Theta_{22,1} = -\underset{(0,\pi)}{\bigoplus}\underset{(\pi,0)}{\bigoplus} \frac{(\pi,0)}{\bullet}=0,\pi
$$

The remaining $\Theta_{ii,k}$'s are fixed by symmetry and the Jacobi identity. This results distinguishes 4 different $\mathbb{Z}_2 \times \mathbb{Z}_2$ 3D SPT phases.

3D Spin system with a gauged $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry:

$$
\Theta_{11,2} = -\underset{(\pi,0)}{\bigoplus}\underset{(\pi,0)}{\bigoplus} \frac{(0,\pi)}{\bullet}=0,\pi \qquad \Theta_{22,1} = -\underset{(0,\pi)}{\bigoplus}\underset{(\pi,0)}{\bigoplus} \frac{(\pi,0)}{\bullet}=0,\pi
$$

The remaining $\Theta_{ii,k}$'s are fixed by symmetry and the Jacobi identity. This results distinguishes 4 different $\mathbb{Z}_2 \times \mathbb{Z}_2$ 3D SPT phases.

More general result:

3D Spin system with a gauged $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry:

$$
\Theta_{11,2} = -\underset{(\pi,0)}{\bigoplus}\underset{(\pi,0)}{\bigoplus} \frac{(0,\pi)}{\bullet}=0,\pi \qquad \Theta_{22,1} = -\underset{(0,\pi)}{\bigoplus}\underset{(\pi,0)}{\bigoplus} \frac{(\pi,0)}{\bullet}=0,\pi
$$

The remaining $\Theta_{ii,k}$'s are fixed by symmetry and the Jacobi identity. This results distinguishes 4 different $\mathbb{Z}_2 \times \mathbb{Z}_2$ 3D SPT phases.

More general result:

Different SPT states with the same $(\mathbb{Z}_N)^K$ can be distinguished by three-loop braiding processes.