Braiding statistics of loop excitations in 3D by Chenjie Wang and Michael Levin (PRL 113, 080403 (2014))

Constantin Schrade

University of Basel

Braiding statistics in 2D

= Part of $\theta_{\rm 12}$, $\mathit{U}_{\rm 12}$ that only depends on the topology of the path γ

Braiding statistics in 2D

= Part of $heta_{12}$, U_{12} that only depends on the topology of the path γ

 $\begin{array}{c|c} \gamma & \text{Abelian Anyons} & \Psi(1,2) \mapsto e^{i\theta_{12}}\Psi(1,2) \\ \bullet & \\ 2 & \bullet & \\ 1 & \text{Non-Abelian Anyons} & \vec{\Psi}(1,2) \mapsto U_{12}\vec{\Psi}(1,2) \end{array}$

Braiding statistics in 3D Point-like particles have trivial braiding statistics in 3D!

Braiding statistics in 2D

= Part of $heta_{12}$, U_{12} that only depends on the topology of the path γ

 $\begin{array}{c|c} \gamma & \text{Abelian Anyons} & \Psi(1,2) \mapsto e^{i\theta_{12}}\Psi(1,2) \\ \bullet & \\ 2 & \bullet & \\ 1 & \text{Non-Abelian Anyons} & \vec{\Psi}(1,2) \mapsto U_{12}\vec{\Psi}(1,2) \end{array}$

Braiding statistics in 3D

3D systems can have loop excitations with non-trivial braiding!

Symmetry Protected Topological (SPT) Order:

1. Gapped quantum many body system with some symmetry G

- 1. Gapped quantum many body system with some symmetry G
- 2. No fractional statistics in the bulk of the system.

- 1. Gapped quantum many body system with some symmetry G
- 2. No fractional statistics in the bulk of the system.
- 3. Symmetry protected edge modes

- 1. Gapped quantum many body system with some symmetry G
- 2. No fractional statistics in the bulk of the system.
- 3. Symmetry protected edge modes
- 4. Classified by the mathematical tool of group cohomology.

Symmetry Protected Topological (SPT) Order:

- 1. Gapped quantum many body system with some symmetry G
- 2. No fractional statistics in the bulk of the system.
- 3. Symmetry protected edge modes
- 4. Classified by the mathematical tool of group cohomology.

Example: 2D Topological Insulator ($\mathsf{G}{=}~\mathcal{T}{\times}~\textit{U}(1)$)

Symmetry Protected Topological (SPT) Order:

- 1. Gapped quantum many body system with some symmetry G
- 2. No fractional statistics in the bulk of the system.
- 3. Symmetry protected edge modes
- 4. Classified by the mathematical tool of group cohomology.

Example: 2D Topological Insulator ($\mathsf{G}{=}~\mathcal{T}{\times}~\textit{U}(1)$)

Characterization of 2D SPT phases

Characterization of 2D SPT phases

Characterization of 2D SPT phases

Different 2D SPT phases with the same symmetry G correspond to different emergent braiding statistics of quasiparticles.

Characterization of 2D SPT phases

Different 2D SPT phases with the same symmetry G correspond to different emergent braiding statistics of quasiparticles.

Characterization of 3D SPT phases

Characterization of 2D SPT phases

Different 2D SPT phases with the same symmetry G correspond to different emergent braiding statistics of quasiparticles.

Characterization of 3D SPT phases

Characterization of 2D SPT phases

Different 2D SPT phases with the same symmetry G correspond to different emergent braiding statistics of quasiparticles.

Characterization of 3D SPT phases

Different 3D SPT phases with the same symmetry G correspond to different emergent three-loop braiding statistics.

Outline

Emergent braiding statistics in 2D SPT Order \mathbb{Z}_2 Symmetry Protected Topological Order Gauging the \mathbb{Z}_2 symmetry Emergent braiding statistics of quasiparticle excitations

Emergent braiding statistics in 3D SPT Order Extending the results to 3D SPT phases Braiding statitics of particles and loops Three loop braiding statistics

How do we physically characterize different 2D SPT phases?

"Trivial" Paramagnet "Topological" Paramagnet

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Trivial" Paramagnet: $H_0 = -\sum_p \sigma_p^x$ with $\left[\sigma_p^x, \sigma_{p'}^x\right] = 0$, $(\sigma_p^x)^2 = 1$.

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Trivial" Paramagnet: $H_0 = -\sum_{p} \sigma_p^x$ with $\left[\sigma_p^x, \sigma_{p'}^x\right] = 0$, $(\sigma_p^x)^2 = 1$. Groundstate: $|\Psi_0\rangle = \left|\sigma_p^x \equiv 1\right\rangle$

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Trivial" Paramagnet: $H_0 = -\sum_p \sigma_p^x$ with $\left[\sigma_p^x, \sigma_{p'}^x\right] = 0$, $(\sigma_p^x)^2 = 1$.

Groundstate: $|\Psi_0\rangle = \left|\sigma_p^x \equiv 1\right\rangle$

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Trivial" Paramagnet: $H_0 = -\sum_p \sigma_p^x$ with $\left[\sigma_p^x, \sigma_{p'}^x\right] = 0$, $(\sigma_p^x)^2 = 1$.

Groundstate: $|\Psi_0\rangle = \left|\sigma_p^x \equiv 1\right\rangle$

The ground state is unique and so there is no SSB!

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Topological" Paramagnet: $H_1 = -\sum_p B_p$ $\begin{bmatrix} B_p, B_{p'} \end{bmatrix} = 0$, $B_p^2 = 1$.

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Topological" Paramagnet: $H_1 = -\sum_{p} B_p$ $[B_p, B_{p'}] = 0$, $B_p^2 = 1$. Groundstate: $|\Psi_1\rangle = |B_p \equiv 1\rangle$

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Topological" Paramagnet: $H_1 = -\sum_p B_p$ $[B_p, B_{p'}] = 0$, $B_p^2 = 1$. Groundstate: $|\Psi_1\rangle = |B_p \equiv 1\rangle$

Is there a spontaneous breaking of the \mathbb{Z}_2 -symmetry?

"Topological" Paramagnet: $H_1 = -\sum_p B_p$ $[B_p, B_{p'}] = 0$, $B_p^2 = 1$. Groundstate: $|\Psi_1\rangle = |B_p \equiv 1\rangle$

The ground state is unique and so there is no SSB!

1. Introduce Hilbert spaces and gauge fields μ_{pq}^{z} on the links

1. Introduce Hilbert spaces and gauge fields μ_{pq}^{z} on the links

 $\mu_{pq}^{z} \qquad \mu_{qq'}^{z} \qquad \mu_{pq}^{z}|1\rangle_{pq} = |+1\rangle_{pq}$ $\mu_{pq}^{z}|-1\rangle_{pq} = -|-1\rangle_{pq}$

1. Introduce Hilbert spaces and gauge fields μ_{pq}^{z} on the links

$$\mu_{pq}^{z}|1\rangle_{pq} = |+1\rangle_{pq}$$
$$\mu_{pq}^{z}|-1\rangle_{pq} = -|-1\rangle_{pq}$$

2. Define "physical" Hilbert space

1. Introduce Hilbert spaces and gauge fields μ_{pq}^{z} on the links

$$\mu_{pq}^{z}|1\rangle_{pq} = |+1\rangle_{pq}$$
$$\mu_{pq}^{z}|-1\rangle_{pq} = -|-1\rangle_{pq}$$

2. Define "physical" Hilbert space

$$\{ \ |\Psi\rangle \mid \sigma_p^x \prod_q \mu_{pq}^x |\Psi\rangle = |\Psi\rangle \ \} \ " = " \ \checkmark = " \ \land = " \ ` = " \$$

1. Introduce Hilbert spaces and gauge fields μ_{pq}^{z} on the links

$$\mu_{pq}^{z}|1\rangle_{pq} = |+1\rangle_{pq}$$
$$\mu_{pq}^{z}|-1\rangle_{pq} = -|-1\rangle_{pq}$$

2. Define "physical" Hilbert space

$$\{ \ |\Psi\rangle \mid \sigma_p^x \prod_q \mu_{pq}^x |\Psi\rangle = |\Psi\rangle \ \} \ " = " \ \checkmark = " \ \land = " \ ` = " \$$

3. Define the new (gauge-invariant) Hamiltonian

3. Define the new (gauge-invariant) Hamiltonian

$$H_{0}' = -\sum_{p} \sigma_{p}^{x} \Pi_{p} - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}$$
$$H_{1}' = -\sum_{p} \widetilde{B}_{p} \Pi_{p} - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}$$

3. Define the new (gauge-invariant) Hamiltonian

$$H_{0}' = -\sum_{p} \sigma_{p}^{x} \Pi_{p} - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}$$
$$H_{1}' = -\sum_{p} \widetilde{B}_{p} \Pi_{p} - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}$$

Replace Operators $O(\sigma_q^z \sigma_{q'}^z) \to \widetilde{O}(\sigma_q^z \mu_{qq'}^z \sigma_{q'}^z)$

3. Define the new (gauge-invariant) Hamiltonian

$$H_{0}' = -\sum_{p} \sigma_{p}^{x} \Pi_{p} - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}$$
$$H_{1}' = -\sum_{p} \widetilde{B}_{p} \Pi_{p} - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}$$

Replace Operators $O(\sigma_q^z \sigma_{q'}^z) \to \widetilde{O}(\sigma_q^z \mu_{qq'}^z \sigma_{q'}^z)$

 $\Pi_{p} = \frac{1}{2} \prod_{\langle pqr \rangle} (1 + \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}) \text{ projects on states with "zero flux"}$ through the adjoining triangles.

3. Define the new (gauge-invariant) Hamiltonian

$$H_{0}' = -\sum_{p} \sigma_{p}^{x} \Pi_{p} - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}$$
$$H_{1}' = -\sum_{p} \widetilde{B}_{p} \Pi_{p} - \sum_{\langle pqr \rangle} \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}$$

Replace Operators $O(\sigma_q^z \sigma_{q'}^z) \to \widetilde{O}(\sigma_q^z \mu_{qq'}^z \sigma_{q'}^z)$

 $\Pi_{p} = \frac{1}{2} \prod_{\langle pqr \rangle} (1 + \mu_{pq}^{z} \mu_{qr}^{z} \mu_{rp}^{z}) \text{ projects on states with "zero flux"}$ through the adjoining triangles.

Ensure that "zero flux" states have the lowest energy.

Emergent braiding statistics

 $V^1_{\beta}V^1_{\gamma} = -V^1_{\gamma}V^1_{\beta}$ (for H'_1)

Emergent braiding statistics

The string algebra fixes the braiding statistics of π -flux excitations!

For H'_0 : $\theta = 0, \pi \to \pi$ -fluxes are bosons or fermions For H'_1 : $\theta = \pm \frac{\pi}{2} \to \pi$ -fluxes are "semions"

This result provides a physical distinction between the two paramagnets!

Outline

Emergent braiding statistics in 2D SPT Order Z₂ Symmetry Protected Topological Order Gauging the Z₂ symmetry Emergent braiding statistics of quasiparticle excitations

Emergent braiding statistics in 3D SPT Order Extending the results to 3D SPT phases Braiding statitics of particles and loops Three loop braiding statistics

How do we physically characterize different 3D SPT phases?

1. Write down a 3D spin-model with symmetry group $(\mathbb{Z}_N)^K$.

- 1. Write down a 3D spin-model with symmetry group $(\mathbb{Z}_N)^K$.
- 2. Gauge the symmetry.

- 1. Write down a 3D spin-model with symmetry group $(\mathbb{Z}_N)^K$.
- 2. Gauge the symmetry.
- 3. The excitations are

Charges

q O

Vortex Loops

- 1. Write down a 3D spin-model with symmetry group $(\mathbb{Z}_N)^K$.
- 2. Gauge the symmetry.
- 3. The excitations are

Charges

q 🔘

Vortex Loops

4. Study the braiding statistics of the excitations.

Charge-Charge braiding:

Charge-Loop braiding:

Loop-Loop braiding: $\theta_{\alpha\beta} = q_{\alpha} \cdot \phi_{\beta} + q_{\beta} \cdot \phi_{\alpha}$

Simplifications:

1. Consider only unit flux loops.

More generic loops are obtained by "fusing" unit flux loops.

Simplifications:

1. Consider only unit flux loops.

More generic loops are obtained by "fusing" unit flux loops.

2. Consider renormalized Berry phase $\Theta_{ij,k} = N\theta_{ij,k}$

 $\Theta_{ij,k}$ is independent of the charged attached to the loop!

1.
$$\Theta_{ij,k} = \Theta_{ji,k}$$
 (Symmetry)

1.
$$\Theta_{ij,k} = \Theta_{ji,k}$$
 (Symmetry)

2.
$$\Theta_{ij,k} = \frac{2\pi}{N}k$$
 with $k \in \mathbb{Z}$ (Quantization)

1.
$$\Theta_{ij,k} = \Theta_{ji,k}$$
 (Symmetry)

2.
$$\Theta_{ij,k} = \frac{2\pi}{N}k$$
 with $k \in \mathbb{Z}$ (Quantization)

3.
$$\Theta_{ij,k} + \Theta_{jk,i} + \Theta_{ki,j} = 0$$
 (Jacobi identity)

1.
$$\Theta_{ij,k} = \Theta_{ji,k}$$
 (Symmetry)
2. $\Theta_{ij,k} = \frac{2\pi}{N}k$ with $k \in \mathbb{Z}$ (Quantization)
3. $\Theta_{ij,k} + \Theta_{jk,i} + \Theta_{ki,j} = 0$ (Jacobi identity)

 Total phase = Nθ_{ijk}
Total phase = q · φ_i = ^{2π}/_Nk with k ∈ Z Since Nφ_j = 2πℓ ≡ 0 with ℓ ∈ Z
→ Θ_{ij,k} = ^{2π}/_Nk with k ∈ Z

N unit fluxes

3D Spin system with a gauged $\mathbb{Z}_2\times\mathbb{Z}_2$ symmetry:

3D Spin system with a gauged $\mathbb{Z}_2\times\mathbb{Z}_2$ symmetry:

$$\Theta_{11,2} = - \bigcirc_{(\pi,0)} \bigcirc_{(\pi,0)} (0,\pi) = 0, \pi \qquad \Theta_{22,1} = - \bigcirc_{(0,\pi)} \bigcirc_{(0,\pi)} (\pi,0) = 0, \pi$$

The remaining $\Theta_{ij,k}$'s are fixed by symmetry and the Jacobi identity.

3D Spin system with a gauged $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry:

$$\Theta_{11,2} = - \bigcirc_{(\pi,0)} \bigcirc_{(\pi,0)} (0,\pi) = 0, \pi \qquad \Theta_{22,1} = - \bigcirc_{(0,\pi)} \bigcirc_{(0,\pi)} (\pi,0) = 0, \pi$$

The remaining $\Theta_{ij,k}$'s are fixed by symmetry and the Jacobi identity. This results distinguishes 4 different $\mathbb{Z}_2 \times \mathbb{Z}_2$ 3D SPT phases.

3D Spin system with a gauged $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry:

$$\Theta_{11,2} = - \bigcirc_{(\pi,0)} \bigcirc_{(\pi,0)} (0,\pi) = 0, \pi \qquad \Theta_{22,1} = - \bigcirc_{(0,\pi)} \bigcirc_{(0,\pi)} (\pi,0) = 0, \pi$$

The remaining $\Theta_{ij,k}$'s are fixed by symmetry and the Jacobi identity. This results distinguishes 4 different $\mathbb{Z}_2 \times \mathbb{Z}_2$ 3D SPT phases.

More general result:

3D Spin system with a gauged $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry:

$$\Theta_{11,2} = - \bigcirc_{(\pi,0)} \bigcirc_{(\pi,0)} (0,\pi) = 0, \pi \qquad \Theta_{22,1} = - \bigcirc_{(0,\pi)} \bigcirc_{(0,\pi)} (\pi,0) = 0, \pi$$

The remaining $\Theta_{ij,k}$'s are fixed by symmetry and the Jacobi identity. This results distinguishes 4 different $\mathbb{Z}_2 \times \mathbb{Z}_2$ 3D SPT phases.

More general result:

Different SPT states with the same $(\mathbb{Z}_N)^K$ can be distinguished by three-loop braiding processes.