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Braiding statistics in 3D
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images/comlab.pdf

Motivation

Braiding statistics in 2D
= Part of θ12, U12 that only depends on the topology of the path γ

12

Abelian Anyons

Non-Abelian Anyons

 (1, 2) 7! ei✓12 (1, 2)

~ (1, 2) 7! U12
~ (1, 2)

�

Braiding statistics in 3D
Point-like particles have trivial braiding statistics in 3D!



images/comlab.pdf

Motivation

Braiding statistics in 2D
= Part of θ12, U12 that only depends on the topology of the path γ

12

Abelian Anyons

Non-Abelian Anyons

 (1, 2) 7! ei✓12 (1, 2)

~ (1, 2) 7! U12
~ (1, 2)

�

Braiding statistics in 3D
Point-like particles have trivial braiding statistics in 3D!



images/comlab.pdf

Motivation

Braiding statistics in 2D
= Part of θ12, U12 that only depends on the topology of the path γ

12

Abelian Anyons

Non-Abelian Anyons

 (1, 2) 7! ei✓12 (1, 2)

~ (1, 2) 7! U12
~ (1, 2)

�

Braiding statistics in 3D
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Main result

Symmetry Protected Topological (SPT) Order:

1. Gapped quantum many body system with some symmetry G

2. No fractional statistics in the bulk of the system.

3. Symmetry protected edge modes

4. Classified by the mathematical tool of group cohomology.

Example: 2D Topological Insulator ( G= T × U(1) )
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Question I

How do we physically characterize different 2D SPT phases?
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Gauging the Z2 Symmetry

3. Define the new (gauge-invariant) Hamiltonian
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q′)→ Õ(σzqµ

z
qq′σ

z
q′)

Πp = 1
2

∏
〈pqr〉(1 + µzpqµ

z
qrµ

z
rp) projects on states with ”zero flux”

through the adjoining triangles.

Ensure that ”zero flux” states have the lowest energy.
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q′)→ Õ(σzqµ

z
qq′σ

z
q′)

Πp = 1
2

∏
〈pqr〉(1 + µzpqµ

z
qrµ

z
rp) projects on states with ”zero flux”

through the adjoining triangles.

Ensure that ”zero flux” states have the lowest energy.



images/comlab.pdf

Gauging the Z2 Symmetry

3. Define the new (gauge-invariant) Hamiltonian

H ′
0 =−

∑

p

σxpΠp−
∑

〈pqr〉

µzpqµ
z
qrµ

z
rp

H ′
1 =−

∑

p

B̃pΠp−
∑

〈pqr〉

µzpqµ
z
qrµ

z
rp

Replace Operators O(σzqσ
z
q′)→ Õ(σzqµ
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Emergent braiding statistics
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Question II

How do we physically characterize different 3D SPT phases?
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Extending the results to 3D
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Simplifications:

1. Consider only unit flux loops.

More generic loops are obtained by ”fusing” unit flux loops.

2. Consider renormalized Berry phase Θij ,k = Nθij ,k
Θij ,k is independent of the charged attached to the loop!
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Properties of renormalized Berry phase:

1. Θij ,k = Θji ,k (Symmetry)

2. Θij ,k = 2π
N k with k ∈ Z (Quantization)

3. Θij ,k + Θjk,i + Θki ,j = 0 (Jacobi identity)
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unit fluxesN
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Example

3D Spin system with a gauged Z2 × Z2 symmetry:

(⇡, 0) (⇡, 0) (0, ⇡)

(0, ⇡)

(0, ⇡)

(⇡, 0)
⇥11,2 = ⇥22,1 == 0, ⇡ = 0, ⇡

The remaining Θij ,k ’s are fixed by symmetry and the Jacobi identity.
This results distinguishes 4 different Z2 × Z2 3D SPT phases.

More general result:

Different SPT states with the same (ZN)K can be distinguished by
three-loop braiding processes.
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