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Photonic graphene
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Figure : a) Scanning electron microscope image of a corner of the microstructure. One hexagon of
pillars is underlined with blue disks. The dark arrows show the growth axis of the cavity. The

overlap between pillars is sketched in (b). (c) First BZ. (d) Measured momentum space energy
2 /3a, under nonresonant low-power excitation. (e) Sketch

resolved photoluminescence at k, = —
of the real space distribution of S and P modes in a single pillar.

D. D. Solnyshkov, et al., Phys. Rev. Lett. 112, 116402 (2014)
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m In the real experimental setup (Fig.(a)), there is a strong coupling between the
localized cavity photons and quantum well excitons.

D. D. Solnyshkov, et al., Phys. Rev. Lett. 112, 116402 (2014)
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m In the real experimental setup (Fig.(a)), there is a strong coupling between the
localized cavity photons and quantum well excitons.

m Hence the particles that really tunnel are “exciton-polaritons” (bound state of
photon and exciton), however, authors claim that the model applies for both in

the regime they consider.

D. D. Solnyshkov, et al., Phys. Rev. Lett. 112, 116402 (2014)
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m In linear polarization basis {L, T}:

(A, LIV|B,Ly=E =—J—6J/2,
(A TIVIB, T = Er = —J+6J/2,
(A,L|V|B,T) = (A, T|V|B,L) =0.

The energy difference §J is due to “longitudal-transversal (L-T) splitting" of the
linearly polarized modes.!

1G. Panzarini, et al., Phys. Rev. B 59, 5082 (1999)
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m In linear polarization basis {L, T}:

(A, LIV|B,Ly=E =—J—6J/2,
(A TIVIB, T = Er = —J+6J/2,
(A,L|V|B,T) = (A, T|V|B,L) =0.

The energy difference §J is due to “longitudal-transversal (L-T) splitting" of the
linearly polarized modes.!

m In circular polarization basis {+, —}:
(A, £|V|B,+) = —J, (A +|V|B,—) = —6Je"2¢,

where ¢ is the angle between the link and the horizontal axis.

1G. Panzarini, et al., Phys. Rev. B 59, 5082 (1999)



Tight-binding description
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m state of the particle in the i-th unit cell is described by bispinor

T
o, = (\Ilj\'7 v v \UE)I_ , with \UAi(B) being the wave function describing

polarization (+) and sublattice A(B).
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m state of the particle in the i-th unit cell is described by bispinor

T
@ = (V3. W3,Wh, Wy ) with WE o) being the wave function describing
polarization (+) and sublattice A(B).

m Using the translational symmetry, one can block-diagonalize <I|I:I|_/> via Fourier
transform ®; — P



Tight-binding description

m 4x4 block in ®y basis is
0 Fy fid  foJ
H, = Fr = — k
k (Fl o) vk (fk‘éJ fid )7
where complex coefficients fk,fki are defined by:

3

3
= Zexp(fikdy,j), fki = Zexp(fi [kdg,j F 2<pj]),

=1 =t

and ¢; = 27(j — 1)/3 is the angle between the horizontal axis and the direction
to the jth nearest neighbor of a type-A pillar.



Rewriting Hy

m Rewriting Hy in terms of Pauli matrices o and s corresponding to sublattice A
and B and polarization degrees of freedom, they obtained

H|EO) =—Joifx + h.c. < graphene-like term,

HEO = —6dor @ (RFsi +fs- ) +he,

where 04+ = (0x £i0y)/2 and s4 = (sx L1isy)/2.




Dispersion from the tight-binding model

m Diagonalizing Hy they obtained 4 dispersion curves:

2(EE)? = 2022+ (162 + 167 1P) 6424

£ SRR — 167 P)260 + 816 + £2 i 2202,
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Figure : (a) gapples dispersion in region §J/J < qa < 1




Low energy approximation around K and K’ points

m Expanding terms HIEO) and HkSO around q = k — K and isolating gq—independent

and -depend parts H&o and Hgo they obtained

H®) =hvr (r2qx0% + qyay) , (1)

HRP =A (120,5, — ox5x) (2)
Aa

H3® =7 [sx(r2ay0y — ax0) = 5y(72Gx0y + ay0x)] (3)

where vp = 3Ja/(2h), A = 36J/2 and 7, equals +1(—1) for K(K’) valleys.
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m Expanding terms HIEO) and HkSO around q = k — K and isolating gq—independent

and -depend parts H&o and Hgo they obtained

H®) =hvr (r2qx0% + qyay) , (1)

HRP =A (120,5, — ox5x) (2)
so Aa

Hq = [sx(Tzqy0y — ax0ox) — sy(72ax0y + qy0x)] (3)

where vp = 3Ja/(2h), A = 36J/2 and 7, equals +1(—1) for K(K’) valleys.
m For §J = 0 only the first graphene-like term (1) is non-zero.

m Term (3), Hgo ~ §J.(qa), is “the smallest"” of them in considered regions
6J,qa < 1, so we forget it in what follows

m Term (2) is dominant in region ga < 6J/J and is responsible for band splitting at
K,K’ points = effective photon mass m* = (2ch?5J)/(3a°J?).



HS®) =hvr (r2qx0% + ayay) , (1)

HC =A (20,5, — ox5x) (2)

m In region §J/J < ga < 1, term (2) is a perturbation to the polarization
independent graphene-like term (1).




HS®) =hvr (r2qx0% + ayay) , (1)

HC =A (20,5, — ox5x) (2)

m In region §J/J < ga < 1, term (2) is a perturbation to the polarization
independent graphene-like term (1).

m It splits its linearly polarized eigenstates in energy, therefore can be interpreted as
an interaction with an in-plane effective magnetic field (in considered region of
parameters).

Figure : (a) gapples dispersion in region §J/J < qa < 1



Effective in-plane magnetic field

HRP =A (20,5, — ox5x) (2)

m If one restricts the state space by fixing the sublattice (positive/negative energies,
c = =) and valley (K,K’, 7, = ), term (2) can be transformed into




Effective in-plane magnetic field

HRP =A (20,5, — oxsx) (2)

m If one restricts the state space by fixing the sublattice (positive/negative energies,
c = =) and valley (K,K’, 7, = ), term (2) can be transformed into

(e, 72| HRO e, 72) = HEO = — Acz (axsx — aysy) /4, (4)

where |c, ;) is one of four eigenstates of graphene-like term (1).

m (4) is "symmetry allowed Dresselhaus-like emergent field




Effective in-plane magnetic field

HSO = — Acr; (qusx — qysy) /q (4)

m the effective field (4) doesn’t open the gap, but leads to the appearence of
massive particles



Effective in-plane magnetic field

HSO = — Acr; (qusx — qysy) /q (4)

m the effective field (4) doesn’t open the gap, but leads to the appearence of
massive particles

m moreover, (4) splits the degenerate Dirac cones by 3§J, Fig.(a)



Effective in-plane magnetic field

HZ® = — Dcrz (axsx — aysy) /q (4)

m the pseudospin (polarization of particles) pattern of the lowest energy eigenstate
reflects the effective field acting on the particles (white arrows), because the
pseudospin aligns with this field Fig.(c),(d)



Effective in-plane magnetic field

HZ® = — Dcrz (axsx — aysy) /q (4)

the pseudospin (polarization of particles) pattern of the lowest energy eigenstate
reflects the effective field acting on the particles (white arrows), because the
pseudospin aligns with this field Fig.(c),(d)

m in Fig.(c) it can be seen that the effective field near K and K’ has opposite sign



Optical spin Hall effect (OSHE)

m The best evidence of the presence of a spin-orbit coupling inducing an effective
magnetic field of a specific symmetry is the optical spin-Hall effect?

2Phys. Rev. Lett. 95, 136601 (2005)
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Optical spin Hall effect (OSHE)

m The best evidence of the presence of a spin-orbit coupling inducing an effective
magnetic field of a specific symmetry is the optical spin-Hall effect?

Theoretical prediction:

m The resonant excitation around the ' point with linearly polarized light should
lead to the radial expansion of wavepacket and formation of four spin domains (in
real space).

m Close to the K and K’ points only the two spin domains (in real space) should
form.

2Phys. Rev. Lett. 95, 136601 (2005)



Numerical simulation

m To check the validity of TB approximation and observability of the OSHE in real
samples, they solve the equation of motion for photonic spinor

. 0 12 ih
in%E = Ay Uy — Ry + (5)

(=9 (g

.9 \2 2 "
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ei(kr—wt)

where:

P(r) = 44 (r),y—(r) are the two circular components of the photon wave function
(polariton polarization)
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Numerical simulation

m To check the validity of TB approximation and observability of the OSHE in real
samples, they solve the equation of motion for photonic spinor

. 0 12 ih
in%%E = Ay 4 Uy — gy (5)

(=9 (g

2 .
+5<%3F"a%) P + Poe B e o2 eilkr—wt)

where:

P(r) = 44 (r),y—(r) are the two circular components of the photon wave function
(polariton polarization)

m is the cavity photon (polariton) mass

U describes the honeycomb lattice

7 is the lifetime of photon (polariton)

[3-term describes L-T splitting

Po-term describes linearly polarized light (during time 79) exciting a wavepacket at
point k and around rp



Numerical simulation

50
1073 b T i

Figure : OSHE in photonic graphene. Circular polarization degree as a function of coordinates: a)
the potential used in the simulations; b) excitation at I' point (TE-TM field); c) excitation at K
point (Dresselhaus effective field); d) excitation at K’ point (field inverted with respect to K’).
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Their conclusions

m They studied the SOC induced by the L-T splitting in a microcavity etched in the
shape of a graphene lattice.

m Within the tight-binding approximation, they found the eigenstates of the system,
derived an effective Hamiltonian and found the effective fields acting on the
photon spin.

m The symmetry of the field is lowered close to the Dirac points where it takes the
form of a Dressehlauss field.

m They verified the experimental observability of the optical Spin Hall effect
induced by this spin-orbit coupling by numerical simulations.
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Figure| Exciton-polariton condensation. a, Typical device structure supporting exciton-polaritans, Excitons, consisting of a bound electron-hole pair,
exist within the quantum well layers. These are sandwiched by two distributed Bragg reflectors (DBRs), made of alternating layers of semiconductors with
different refractive indices, The DBRs form acavity that strongly couples a photon and an exciton to form an exciton-polariton. Polaritons are excited by a
pump laser incident from above. b, Exciton-polariton dispersion and condensation process. Strong coupling between the cavity photon and exciton
dispersions split the dispersions near k=0 to create the lower polariton (LP) and upper polariton (UP) dispersions. The pump laser initially excites
high-energy excitons, which then cool via phanan emission towards the bottleneck region (black clouds). We show both the resonant pumping scheme
(large blue arrow) and the non-resonant pumping scheme (large red arrow, pumped at a higher energy beyond the scale shown). Excitons in the bottieneck
region then scatter into the condensate (orange cloud) via stimulated cooling ¢, Experimental dispersion images of polariton condensate formation from
ref. 5. Below the threshold for condensation the polaritons are broadly distributed in momentum and energy. At and above threshold the polaritons
condense inthe k=0 ground state. d, Polariton ground state population for 3 polariton laser 25 a function of the pump power from ref. 36. The figurealso
shows the threshold for a standard leser achieved by a sufficiently large detuning to lose strong coupling in the same sample for comparison.




