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Photonic graphene
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Figure : a) Scanning electron microscope image of a corner of the microstructure. One hexagon of
pillars is underlined with blue disks. The dark arrows show the growth axis of the cavity. The
overlap between pillars is sketched in (b). (c) First BZ. (d) Measured momentum space energy
resolved photoluminescence at kx = −2π/3a, under nonresonant low-power excitation. (e) Sketch
of the real space distribution of S and P modes in a single pillar.

D. D. Solnyshkov, et al., Phys. Rev. Lett. 112, 116402 (2014)
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In the real experimental setup (Fig.(a)), there is a strong coupling between the
localized cavity photons and quantum well excitons.

Hence the particles that really tunnel are “exciton-polaritons” (bound state of
photon and exciton), however, authors claim that the model applies for both in
the regime they consider.

D. D. Solnyshkov, et al., Phys. Rev. Lett. 112, 116402 (2014)
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In linear polarization basis {L,T}:

〈A, L|V̂ |B, L〉 ≡ EL = −J − δJ/2,

〈A,T |V̂ |B,T 〉 ≡ ET = −J + δJ/2,

〈A, L|V̂ |B,T 〉 = 〈A,T |V̂ |B, L〉 = 0.

The energy difference δJ is due to “longitudal-transversal (L-T) splitting“ of the
linearly polarized modes.1

In circular polarization basis {+,−}:

〈A,±|V̂ |B,±〉 = −J, 〈A,+|V̂ |B,−〉 = −δJe−2iϕ,

where ϕ is the angle between the link and the horizontal axis.

1G. Panzarini, et al., Phys. Rev. B 59, 5082 (1999)
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Tight-binding description
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state of the particle in the i-th unit cell is described by bispinor

Φi =
(

Ψ+
A ,Ψ

−
A ,Ψ

+
B ,Ψ

−
B

)T
i

, with Ψ±
A(B)

being the wave function describing

polarization (±) and sublattice A(B).

Using the translational symmetry, one can block-diagonalize 〈i |Ĥ|j〉 via Fourier
transform Φi → Φk
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Tight-binding description
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4x4 block in Φk basis is

Hk =

(
0 Fk

F†k 0

)
, Fk = −

(
fkJ f +

k δJ

f −k δJ fkJ

)
,

where complex coefficients fk,f ±k are defined by:

fk =
3∑

j=1

exp(−ikdϕj ), f ±k =
3∑

j=1

exp(−i
[
kdϕj ∓ 2ϕj

]
),

and ϕj = 2π(j − 1)/3 is the angle between the horizontal axis and the direction
to the jth nearest neighbor of a type-A pillar.
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Rewriting Hk

Rewriting Hk in terms of Pauli matrices σ and s corresponding to sublattice A
and B and polarization degrees of freedom, they obtained

H
(0)
k =− Jσ+fk + h.c. ← graphene-like term,

HSO
k =− δJσ+ ⊗

(
f +
k s+ + f −k s−

)
+ h.c.,

where σ± = (σx ± iσy )/2 and s± = (sx ± isy )/2.
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Dispersion from the tight-binding model

Diagonalizing Hk they obtained 4 dispersion curves:

2(E±k )2 = 2|fk|2J2 +
(
|f +
k |

2 + |f −k |
2
)
δJ2±

±
√

(|f +
k |2 − |f

−
k |2)2δJ4 + 4|fkf +∗

k + f ∗k f −k |2J2δJ2.

Figure : (a) gapples dispersion in region δJ/J � qa� 1
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Low energy approximation around K and K′ points

Expanding terms H
(0)
k and HSO

k around q = k− K and isolating q−independent

and -depend parts HSO
K and HSO

q they obtained

H
(0)
q =~vF (τzqxσx + qyσy ) , (1)

HSO
K =∆ (τzσy sy − σx sx ) , (2)

HSO
q =

∆a

2
[sx (τzqyσy − qxσx )− sy (τzqxσy + qyσx )] (3)

where vF = 3Ja/(2~), ∆ = 3δJ/2 and τz equals +1(−1) for K(K′) valleys.

For δJ = 0 only the first graphene-like term (1) is non-zero.

Term (3), HSO
q ∼ δJ.(qa), is “the smallest“ of them in considered regions

δJ, qa� 1, so we forget it in what follows

Term (2) is dominant in region qa� δJ/J and is responsible for band splitting at
K,K′ points ⇒ effective photon mass m∗ = (2c~2δJ)/(3a2J2).
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H
(0)
q =~vF (τzqxσx + qyσy ) , (1)

HSO
K =∆ (τzσy sy − σx sx ) , (2)

In region δJ/J � qa� 1, term (2) is a perturbation to the polarization
independent graphene-like term (1).

It splits its linearly polarized eigenstates in energy, therefore can be interpreted as
an interaction with an in-plane effective magnetic field (in considered region of
parameters).

Figure : (a) gapples dispersion in region δJ/J � qa� 1
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Effective in-plane magnetic field

HSO
K =∆ (τzσy sy − σx sx ) (2)

If one restricts the state space by fixing the sublattice (positive/negative energies,
c = ±) and valley (K,K′, τz = ±), term (2) can be transformed into

〈c, τz |HSO
K |c, τz 〉 ≡ HSO

c =−∆cτz (qx sx − qy sy ) /q, (4)

where |c, τz 〉 is one of four eigenstates of graphene-like term (1).

(4) is ”symmetry allowed Dresselhaus-like emergent field“
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Effective in-plane magnetic field

K

ГM K

HSO
c =−∆cτz (qx sx − qy sy ) /q (4)

the effective field (4) doesn’t open the gap, but leads to the appearence of
massive particles

moreover, (4) splits the degenerate Dirac cones by 3δJ, Fig.(a)
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Effective in-plane magnetic field

K

ГM K

HSO
c =−∆cτz (qx sx − qy sy ) /q (4)

the pseudospin (polarization of particles) pattern of the lowest energy eigenstate
reflects the effective field acting on the particles (white arrows), because the
pseudospin aligns with this field Fig.(c),(d)

in Fig.(c) it can be seen that the effective field near K and K′ has opposite sign
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Optical spin Hall effect (OSHE)

The best evidence of the presence of a spin-orbit coupling inducing an effective
magnetic field of a specific symmetry is the optical spin-Hall effect2

Theoretical prediction:

The resonant excitation around the Γ point with linearly polarized light should
lead to the radial expansion of wavepacket and formation of four spin domains (in
real space).

Close to the K and K’ points only the two spin domains (in real space) should
form.

2Phys. Rev. Lett. 95, 136601 (2005)
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Numerical simulation

To check the validity of TB approximation and observability of the OSHE in real
samples, they solve the equation of motion for photonic spinor

i~ ∂ψ±
∂t

= − ~2

2m
∆ψ± + Uψ± − i~

2τ
ψ± + (5)

+β
(
∂
∂x
∓ i ∂

∂y

)2
ψ∓ + P0e

− (t−t0)2

τ2
0 e

− (r−r0)2

σ2 e i(kr−ωt)

where:
ψ(r) = ψ+(r), ψ−(r) are the two circular components of the photon wave function
(polariton polarization)

m is the cavity photon (polariton) mass
U describes the honeycomb lattice
τ is the lifetime of photon (polariton)
β-term describes L-T splitting
P0-term describes linearly polarized light (during time τ0) exciting a wavepacket at
point k and around r0
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Numerical simulation
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Figure : OSHE in photonic graphene. Circular polarization degree as a function of coordinates: a)
the potential used in the simulations; b) excitation at Γ point (TE-TM field); c) excitation at K
point (Dresselhaus effective field); d) excitation at K’ point (field inverted with respect to K’).
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Their conclusions

They studied the SOC induced by the L-T splitting in a microcavity etched in the
shape of a graphene lattice.

Within the tight-binding approximation, they found the eigenstates of the system,
derived an effective Hamiltonian and found the effective fields acting on the
photon spin.

The symmetry of the field is lowered close to the Dirac points where it takes the
form of a Dressehlauss field.

They verified the experimental observability of the optical Spin Hall effect
induced by this spin-orbit coupling by numerical simulations.
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