Universal spin-triplet superconducting correlations of Majorana fermions Xin Liu, Jay D. Sau, and S. Das Sarma;arXiv:1501.07273

Marcel Serina

February 9, 2015

CMT journal club

Table of contents

3 [MF-induced resonant spin-triplet AR](#page-8-0)

Current context

- MFs in topological superconductors: Symmetry protected zero-energy subgap states, equal weight electron-hole superposition, $\gamma=\gamma^\dagger$
- Unique transport signatures: quantized 0-bias conductance, fractional Josephson effect
- • Open challenge: to manipulate MFs by their spin properties

Resume of results

- MFs have only spin-triplet superconducting correlations which is model independent and guaranteed by the particle-hole symmetry for the TSCs in D class and particle-hole as well as time-reversal symmetries for the TSCs in DIII class.
- No matter whether the bulk superconducting gap is spin singlet or triplet, the MF-induced resonant Andreev reflection (AR) only injects spin-triplet Cooper pairs into the normal lead.
- New transport signature of MFs: TSC/spin-orbit coupl. semicond./TSC setup. SOC controlled oscillatory critical Josephson current.

Comments I

- Following is known from the zoology of $TSCs$ in¹ and from random-matrix theory in 2
- 4 classes of TSCs based on the symmetries of Hamiltonian are possible. Relevant are time-rev. (TR), particle-hole (PH) and spin-rotation SU(2). For TSC in BdG description PH is always present. DIII respects TR, D does not. Both do not respect $\mathsf{SU}(2)$, resulting $[\mathcal{H}_{BdG};\mathcal{S}_i]\neq 0$. \mathcal{S}_i are $\mathsf{SU}(2)$ generators in BdG representation.
- Zero energy eigenstates are possible only in D and DIII. Those classes do not commute with S_i thus their eigenstates are not spin singlets. So MFs here cannot be spin singlets.

¹Andreas P. Schnyder et al., PhysRevB.78.195125 (2008) 2 C.W.J.Beenakker et al., PhysRevB.83.085413 (2011)

Comments II

- We can further investigate the SU(2) spin structure of D and DIII classes by calculating the commutators with SU(2) generators, construct the SU(2) representation and we find that eigenstates of these classes have always spin triplet structure.
- Based on these arguments, fact that MFs are always spin triplets is obvious.

Off-diagonal spectral function I

• From symmetry arguments, it can be shown that block off-diagonal part of the spectral function in the 4-component spinor basis $(\psi_\uparrow,\psi_\downarrow,\psi_\downarrow^\dagger,-\psi_\uparrow^\dagger$ \downarrow), with d_0 and **d** being the spin-singlet and triplet pairing amplitudes respectively, can be written as

$$
A^{\text{off}}(E) = \left(\begin{array}{cc} 0 & d_0\sigma_0 + \mathbf{d} \cdot \boldsymbol{\sigma} \\ \left[d_0\sigma_0 + \mathbf{d} \cdot \boldsymbol{\sigma}\right]^{\dagger} & 0 \end{array}\right)
$$

• PH symmetry for 0-energy spectral function requires $\hat{C}A(E=0)\hat{C}^{-1}=A(E=0)$, where $\hat{C}=\tau_{V}\sigma_{V}K$ is the particle-hole operator and $\tau_{x,y,z}$ are the Pauli matrices in particle-hole space, $\sigma_{x,y,z}$ in spin space and K is complex conjugation.

Off-diagonal spectral function II

$$
\hat{C}A^{\text{off}}\hat{C}^{-1} = \left(\begin{array}{cc} 0 & (-d_0\sigma_0 + \mathbf{d} \cdot \sigma) \\ [(-d_0\sigma_0 + \mathbf{d} \cdot \sigma)]^{\dagger} & 0 \end{array}\right)
$$

- That gives us $d_0 = 0$, thus PH symmetry completely forbids spin-singlet pairing and allows spin-triplet only.
- D class has only one MF mode and everything is done. DIII class has two MF modes, which can appear as one fermion resulting in zero $A^{\rm off}$. But TR symmetry guarantees that two MFs belong to different spin channel, what gives us triplet pairing again.

Scattering matrix of SC/NM junction

General form of S-matrix on the interface of SC/normal metal according to³:

$$
\hat{\mathsf{R}}(E) = \begin{pmatrix} \hat{\mathsf{r}}_{\text{ee}}(E) & \hat{\mathsf{r}}_{\text{eh}}(E) \\ \hat{\mathsf{r}}_{\text{he}}(E) & \hat{\mathsf{r}}_{\text{hh}}(E) \end{pmatrix}
$$
\n
$$
\hat{\mathsf{r}}_{\text{eh}}(E) = a_0\sigma_0 + a_j\sigma_j = -\sigma_y\hat{\mathsf{r}}_{\text{he}}^*(-E)\sigma_y
$$
\n
$$
\hat{\mathsf{r}}_{\text{ee}}(E) = b_0\sigma_0 + b_j\sigma_j = \sigma_y\hat{\mathsf{r}}_{\text{hh}}^*(-E)\sigma_y
$$

• $\hat{r}_{\text{(ee,hh)}}$ and $\hat{r}_{\text{eh,he}}$ are the normal reflection and AR matrices respectively, and $b_{0,x,y,z}$ and $a_{0,x,y,z}$ are the normal reflection and AR coefficients respectively

³C.W.J.Beenakker et al.,PhysRevB.83.085413 (2011)

Symmetry properties of S-matrix

- a_0 provides spin-singlet channel, $a_{x,y,z}$ spin-triplet channels. As MFs are only spin-triplets we expect that MF induced resonant AR can occur only in spin-triplet channels. Authors show this first for $E = 0$ with S-matrix theory for DII class and numerically calculate the S-matrix further from $E = 0$ inside the gap for both classes.
- For D class TSC it is known⁴ that incoming electron and reflected hole in resonant AR have the same spin, thus providing spin-triplet channel.

⁴ J.J.He et al.,PhysRevLett.112.037001 (2014)

Majorana-induced resonant Andreev reflection (MIRAR)

(a) Conventional resonant tunneling: two leads are coupled to a resonant level with coupling amplitudes t_1 and t_2 , respectively. Resonant tunneling with unity transmission probability can happen only if $t_1 = t_2$. (b) MIRAR: a single-lead coupled to a Majorana level plays the role of both an electron lead and a hole lead. The coupling amplitudes of the leads to the Majorana level are ensured to be the same. The Majorana mode is attached to a superconductor which is grounded.

DIII class TSC/NM interface

- For a DIII class TSC/NM interface, the condition $\hat{T}\hat{R}^{\dagger}\hat{T}^{-1} = \hat{R}$, due to time reversal symmetry, constrains $b_{x,y,z} = 0$. Here $\hat{T} = i\sigma_y K$. The unitarity of \hat{R} further requires *either* $(|b_0|^2 + |a_0|^2 = 1$ and $a_x = a_y = a_z = 0)$ *or* $(|a_x|^2 + |a_y|^2 + |a_z|^2 = 1$ and $b_0 = a_0 = 0$.
- The former corresponds to the trivial spin-singlet AR with $Q = \mathrm{Pf}\left(i\sigma_y \hat{R}\right) = 1$. More importantly, the latter indicates the perfect spin-triplet AR and results in the nontrivial topological invariant $Q = -1$.

Model Hamiltonians I

$$
H_{\text{TS}}^{\text{D}} = (-2t \cos(k) - \mu_{\text{s}}) \tau_{\text{z}} \otimes \sigma_{0} - M \tau_{0} \otimes \sigma_{\text{z}} + 2t_{\text{so}} \sin(k) \tau_{\text{z}} \otimes \sigma_{\text{y}} + \Delta \tau_{\text{x}} \otimes \sigma_{0}
$$

$$
H_{\text{TS}}^{\text{DIII}} = (-2t \cos(k) - \mu_{\text{s}}) \tau_{\text{z}} \otimes \sigma_{0}
$$

+2t_{so} $\sin(k) \tau_{\text{z}} \otimes \sigma_{\text{z}} + \Delta(k) \tau_{\text{x}} \otimes \sigma_{0}$

t is the spin independent hopping, $t_{\rm so}$ is the SOC hopping and $\mu_{\rm s}$ is the chemical potential of the SOC wire with M the Zeeman coupling strength and Δ the proximity induced superconducting gap. In DIII $\Delta(k) = (\Delta_0 - \Delta_1 \cos(k))$

Model Hamiltonians II

- $H_{\text{NM}} = (-2t \cos(k) \mu_{\text{n}})\tau_z \otimes \sigma_0$ is the Hamiltonian of normal metal. Authors calculate S-matrix at $x = x_1$ (site in the NM closest to the TSC) using Fisher-Lee relation $\hat{R}_{ij}(E,r) = -\delta_{ij} + i\hbar \sqrt{\nu_i \nu_j} G_{ij}^R(E,r)$, where G^R is the retarded Green's function with $i,j = 1, \ldots, 4$ and $v_{i(j)}$ is the velocity of the particle at energy E in $i(j)$ channels.
- Aim is to see the difference in AR amplitude in the trivial and topological state as well as compare the results for both classes

S-matrix analysis for D class Hamiltonian

• (a) Time-reversal broken TSC/NM junction. The red peak indicates the location of the barrier with the potential $U = 2t$. (b) and (c) The superconductor is in the topological nontrivial regime. (d) and (f) The superconductor is in the topological trivial regime.

S-matrix analysis for DIII class Hamiltonian

• TR invariant TSC/NM junction. The bulk dispersion of the TSC shows two SC gaps. The inset shows the sign of the minimal gap Δ_{\min} is negative. The conductance of the TSC/NM junction as a function of energy. AR probabilities for spin-singlet and spin-triplet channels.

SOC controlled critical Josephson current I

- Authors have shown, that MIRAR always injects spin-triplet Cooper pairs. Recet studies show⁵, that SOC can rotate the d vector of the spin-triplet Cooper pairs and leave spin-singlet ones unaffected.
- SOC can then distinguish singlet and triplet Cooper pairs. Authors assume TSC/SOC-semicond./TSC Josephson junction and show that rotation of **d** vector results in oscillation of the critical Josephson current. TSC is described by $H^{\rm D}_{\rm TS}.$
- $H_{\text{semi}}=(-2t\cos(ka)-\mu_{\text{s}})\tau_{\text{z}}\otimes\sigma_{0}+2t'_{\text{so}}\sin(ka)\tau_{\text{z}}\otimes\sigma_{\text{y}}$, what induces precession of spin in $x - z$ plane, so $| \uparrow \uparrow \rangle$ changes to $|\nearrow \nearrow \rangle$ and $\langle \uparrow \uparrow | \nearrow \nearrow \rangle = (1 + \cos \theta)/2.$

 $5X$ in Liu et al., PhysRevLett. 113.227002 (2014)

SOC controlled critical Josephson current II

- $\theta = N \frac{t_{\rm so}'}{t}$, N is the number of sites in the normal SOC region and this holds in the limit $t'_{\mathsf{so}} \ll t$
- $I_{\rm s}=\frac{2e}{h}$ $\frac{2e}{\hbar}\sum_{n}\partial E_{n}/\partial\phi=I_{c}\sin(\phi/2)$ where I_{c} is the critical current, with the summation over all the negative Andreev levels.
- Similar results have been predicted for SFS junctions, where MFs do not play any role and where $0 - \pi$ transition is observed for $I_c \rightarrow 0$. In contrast, here we do not observe such transition. Authors claim, that their prediction of the SOC controlled critical current is a transport signature of MFs.

SOC controlled critical Josephson current III

(a) TSC/SOC/TSC junction. (b) Andreev levels for different SOC strengths which correspond to the precession angles $\theta = 0, 3\pi/4, \pi, 5\pi/4, 2\pi$ respectively. (c) The oscillatory critical current as a function of θ . The current is normalized by the critical current at $t'_{so}=0.$

Summary

- MFs as a zero energy bound states of TSCs always have spin-triplet correlations regardless of the bulk superconducting gap.
- This property can be used in TSC/SOC-semicond./TSC setup to obtain the SOC-dependent critical Josephson current as another transport signature of MFs.