arXiv:1502.02088v1 [cond-mat.mes-hall] 7 Feb 2015

Majorana Fermion Rides on a Magnetic Domain Wall

Se Kwon Kim,¹ Sumanta Tewari,² and Yaroslav Tserkovnyak¹

¹Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA 2 Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA

We propose using a mobile magnetic domain wall as a host of zero-energy Majorana fermions in a spin-orbit coupled nanowire sandwiched by two ferromagnetic strips and deposited on an s-wave superconductor. The ability to control domain walls by thermal means allows to braid Majorana fermions nonintrusively, which obey non-Abelian statistics. The analytical solutions of Majorana fermions inside domain walls are obtained in the strong spin-orbit regime.

> Paweł Szumniak CMT Journal Club 17.02.2015

Device

BdG Hamiltonian:

$$
H^{BdG} = \left(-\frac{\hbar^2}{2m}\partial_x^2 - \mu + i\alpha\partial_x\sigma_y\right)\tau_3 + \vec{M}\cdot\vec{\sigma} + \Delta\tau_1
$$

\n
$$
\hat{\gamma}^{\dagger} = \int dx \sum_{\alpha = \uparrow, \downarrow} [u_{\alpha}(x)\hat{\psi}_{\alpha}^{\dagger}(x) + v_{\alpha}(x)\hat{\psi}_{\alpha}(x)]
$$

\nIngredients for MFs:
\n-Proximity induced exchange field **M**
\n-Proximity induced s-wave
\nsuperconducting order parameter Δ
\n-Spin orbit coupling α
\n
$$
\pi
$$
,
\n
$$
E_g = |M| - \sqrt{\Delta^2 - \mu^2}
$$

\nS-Wave

$$
\Psi=(u_{\uparrow},u_{\downarrow},v_{\downarrow},-v_{\uparrow})^{\rm T}
$$

Topological gap, MF at DW position

$$
E_g = |M| - \sqrt{\Delta^2 - \mu^2}
$$
\n
$$
E_g = \begin{cases} E_g > 0 \text{ for } |M| > \sqrt{\Delta^2 - \mu^2} \text{ (topological phase)}\\ E_g < 0 \text{ for } |M| < \sqrt{\Delta^2 - \mu^2} \text{ (normal phase)} \end{cases}
$$

A one-dimensional wire supports **MFs** at the**boundary between topological and nontopological regions.**

 A spatially-varying exchange field induces the topological phase transition along the wire where $\lfloor M \rfloor$ crosses $\sqrt{\Delta^2 - \mu^2}$

.

A DW in a ferromagnet adjacent to the wire is a natural object to bring about such a position dependent field.

In general topological phase transition along the nanowire can be realized by spatially varying:

$$
B(x), \Delta(x), \mu(x)
$$

PRL 105, 177002 (2010)Helical Liquids and Majorana Bound States in Quantum WiresYuval Oreg, Gil Refael,and Felix von Oppen

Magnetic Domain Wall

A

 K_{x} Ky

Energy of the ferromagnet

N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974)

$$
U[\mathbf{m}(x)] = \int dx \left[A|\partial_x \mathbf{m}|^2 - K_x m_x^2 + K_y m_y^2\right]/2
$$

Domain wall – topological soliton, minimazing U[**m**(x)]With bounday conditions $m(x \rightarrow \pm \infty) = \hat{x}$

$$
\mathbf{m}(x) = \tanh(x/\lambda)\hat{\mathbf{x}} + \mathrm{sech}(x/\lambda)\hat{\mathbf{z}}
$$

Proximity induced exchange field:

$$
\lambda = \sqrt{A/K_x}
$$

$$
\mathbf{M}(x) = M_1 \left[\tanh(x/\lambda)\hat{\mathbf{x}} + \mathrm{sech}(x/\lambda)\hat{\mathbf{z}} \right] + M_2 \hat{\mathbf{x}}
$$

Spatially varying topological gap

$$
E_g(x) = \sqrt{M_1^2 + M_2^2 + 2M_1M_2 \tanh(x/\lambda)} - \sqrt{\Delta^2 + \mu^2}
$$

Position of the Majorana $E_{g}(\mathbf{x}_{0})$ = 0

$$
M_1 = M_2 \quad 2M_1 > \sqrt{\Delta^2 + \mu^2}
$$

$$
X_0 = \lambda \tan\left[\left(\Delta^2 + \mu^2\right)/M_1^2 - 1\right]
$$

How to control DW

● External magnetic field N.L. Schryer and L.R. Walker, Canal C.R. 2015, E.R. 2006 (1974)

• Spin polarized electric current (in itinerant ferromagnet) J. Slonczewski, J. Magn. Magn. Mater. 159, L1

But

• These methods affects the electron in the nanowire by altering the Hamiltonian

Authors propose instead:

• Induce motion of DW by thermal drag which is not intrusive for
electrons و electrons السلام الشهيد و عليه السلام الشهيد الشهيد الشهيد الشهيد الشهيد الشهيد الشهيد الشهيد الشه

 $electrons$ D. Hinzke and U. Nowak, Phys. Rev. Lett. 107, 027205 (2011); P. Yan, X.Wang, and X.Wang, Phys. Rev. Lett. 107, 177207 (2011); A. A. Kovalev and Y. Tserkovnyak, Europhys. Lett. 97, 67002 (2012)

(1996);L. Berger, Phys. Rev. B 54, 9353 (1996)

Exact solution for Majoranas

Strong SOC regime

$$
E_{SO} = \frac{m\alpha^2}{\hbar^2} \gg \max\left(\Delta, |\vec{M}|\right)
$$

Linearized BdG Hamiltonian density at **k**=0, and µ=0

 $\mathcal{H}^{\text{lin}} = -i\alpha \partial_x \sigma_2 \tau_3 + M_x(x)\sigma_1 + M_z(x)\sigma_3 + \Delta \tau_1$

For $\mathbf{M}_z = 0$, \mathbf{H}^{lin} belongs to BDI symmetry class Particle hole symmetry $\{ H^{lin}, \sigma_2 \tau_2 K \} = 0$ Time reversal symmetry $\left\{ H^{\textit{lin}}, \sigma_{\textit{l}} \tau_{\textit{l}} K \right\} = 0$ Chiral symmetry $\left\{ H^{lin}, \sigma_3 \tau_3 K \right\} = 0$ R. Jackiw ar Rebbi, Phys. 13, 3398 (19

Block diagonalization by employing Majorana operators (instead of fermion operators).

$$
\hat{\psi}_{\downarrow} = (\hat{\gamma}_{\downarrow}^{A} + i\hat{\gamma}_{\downarrow}^{B})/\sqrt{2}, \quad \hat{\psi}_{\uparrow} = (\hat{\gamma}_{\uparrow}^{B} + i\hat{\gamma}_{\uparrow}^{A})/\sqrt{2}.
$$

$$
\hat{\gamma}^{+} = \int dx \sum_{\beta = A, B} \left[u_{\alpha}^{\beta}(x)\hat{\gamma}_{\alpha}^{\beta}(x) \right]
$$

$$
\tilde{\Psi} = (u^{A}, u^{B})^{\mathrm{T}} \equiv (u_{\uparrow}^{A}, u_{\downarrow}^{A}, u_{\uparrow}^{B}, u_{\downarrow}^{B})^{\mathrm{T}} \qquad \tilde{\Psi} = U\Psi
$$

$$
i\partial_{t}\tilde{\Psi} = (U\mathcal{H}^{\text{lin}}U^{\dagger})\tilde{\Psi}
$$

Two Dirac equations (Jackiw-Rebbi soliton with fermion number 1/2):

()() () () ()xx for M >0 for M <0*Ag ^B^m ^x ^xE ^x^m ^x ^x*= () () () () - - *AxBx^m ^x M ^x^m ^x M ^x*= ∆=∆

Solution

For the exchange field Dirac equations have two zero energy solutions:(with help of supersymmetric quantum mechanics)F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995)

$$
\hat{\gamma}^A = \int dx \, e^{-(M_2 + \Delta)x} \text{sech}^{M_1 \lambda}(x/\lambda) \hat{\gamma}^A_\uparrow(x)
$$

$$
\hat{\gamma}^B = \int dx \, e^{-(M_2 - \Delta)x} \text{sech}^{M_1 \lambda}(x/\lambda) \hat{\gamma}^B_\uparrow(x)
$$

Perturbations breaking the BDI time reversalsymmetry split the degeneracy

(

$$
\left(-\frac{\hbar^2}{2m}\partial_x^2\right)\tau_3 \qquad \text{Hybridizes MFs with energy} \\ \leq \hbar^2 \max\left(M_1^2, \Delta^2\right)/2m\alpha^2 \ll M_1, \Delta
$$

 $\hat{f} = (\hat{\gamma}^A + i\hat{\gamma}^B)/2$ Physical fermion couples to $M_z(x) = M_z \operatorname{sech}(x/\lambda) \rightarrow 0(\lambda \rightarrow)$ Normalizable MF solutions whenn $\frac{M_2 - M_1}{M M_2}$ $M_2 < M_1 + \Delta$ $\rm M_{_2}$ < $\rm M_{_1}$ - $\rm \Delta$

Masses cross zero when

 $\frac{1}{5}$ 10 $\overline{10}$

 -10

$$
m^{A(B)}(x_0) = 0
$$
 for $x_0 = \lambda \tan[-(M_2 \pm \Delta)/M_1 - 1]$

For
$$
M_1 = M_2 > \Delta/2
$$
 $x_0 = \lambda \tan[(\Delta^2)/M_1^2 - 1]$

M. Sato, Y. Takahashi,
\nand S. Fujimoto, Phys.
\nRev.
\nLett. 103, 020401 (2009)
$$
u_{\downarrow}^{A}(x) = -(\nu + 1/2) \frac{e^{\Delta x}}{\sqrt[4]{1 + e^{2x/\lambda}}} P^{-\nu}_{-1/2} \left(\frac{1}{\sqrt{1 + e^{-2x/\lambda}}} \right)
$$

\n $e^{\Delta x} \frac{e^{\Delta x}}{\sqrt[4]{1 + e^{2x/\lambda}}} P^{-\nu - 1}_{-1/2} \left(\frac{1}{\sqrt{1 + e^{-2x/\lambda}}} \right)$
\n $\frac{e^{\mu}}{\sqrt[4]{1 + e^{2x/\lambda}}} P^{-\nu - 1}_{-1/2} \left(\frac{1}{\sqrt{1 + e^{-2x/\lambda}}} \right)$
\n $\frac{e^{\mu}}{\sqrt[4]{1 + e^{-2x/\lambda}}}$

 -10

 (b)

Parameters

- **InAs** nanowires witg strong SOC $\alpha \sim 5 \text{meV nm}$
- **EuO** magnetic insulators $|M| \sim 1 \text{meV}$
- **Nb** s-wave superconductors ∆ [∼] 0.5meV
- Thermally-driven motion of a DW has been observed in (**YIG**) yttrium iron garnet films, the DW moves at the velocity v ∼ 100 μ m/s) for ∇T ~ 2 μ eV/ μ m
- Rezultat temperature drop over the DW width λ =60nm smaller than the the induced topological gan \approx 200 UeV the induced topological gap ~ 200 $\mu{\rm eV}$

Summary

• Magnetic domain Walls \implies Spatially varying exchange field

⇓

⇓

⇓

 \bullet Spatially varying topological gap \implies Majorana bounded to DW

(analytical solution in strong SOC regime)

- Thermal Driven motion of DW \Rightarrow Riding MF
- Braiding two Majoranas in Y junctions

Thank you for your attention!

arXiv:1502.02088v1 [cond-mat.mes-hall] 7 Feb 2015

Majorana Fermion Rides on a Magnetic Domain Wall

Se Kwon Kim,¹ Sumanta Tewari,² and Yaroslav Tserkovnyak¹

¹Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA 2 Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA

We propose using a mobile magnetic domain wall as a host of zero-energy Majorana fermions in a spin-orbit coupled nanowire sandwiched by two ferromagnetic strips and deposited on an s-wave superconductor. The ability to control domain walls by thermal means allows to braid Majorana fermions nonintrusively, which obey non-Abelian statistics. The analytical solutions of Majorana fermions inside domain walls are obtained in the strong spin-orbit regime.