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Introduction. Two macroscopic selfoscillators syn-
chronize when their relative phase locks to a fixed

value [1].

Features of Self-Oscillations

the system does not stop with the course of

time.

* They oscillate “by themselves”, i.e., not because

they are repetitively kicked from outside.

Essentials for Self-Oscillations
* They do not damp, i.e., the repetitive motion of * Dissipation

* Power Source
* Non-linear

* The shape, amplitude and time scale of these

oscillations are chosen by the oscillating systems
alone, e.g., they are not easily changed by

setting different initial conditions.
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Cold ions in microtraps provide a natural platform
for exploring synchronization in the quantum regime [5].
The generation of self-oscillations in the motional state of
ions, phonon-lasing, has already been observed [15]. Fur-
thermore, precise control of trapping potentials of the
individual ions can now be achieved with microtraps [16]
allowing the vibrational frequencies of individual ions and
the coupling between different ions to be tuned.
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Each ion is in a microtrap [16] with

frequency w;—; 2. The quantized vibrational degree of .
freedom (phonons) are linearly damped at a rate I using
standing-wave lasers, as deseribed in [17, 18]. Each ion's .
internal degree of freedom is driven by plane wave lasers

with Rabi frequencies £2;-1 2, which are set to be reso- .
nant with the first blue sideband transition.

Assumptions
The dynamics of the internal degrees of freedom is assumed to
occur on the fastest time scale.
Lamb-Dicke Approximation: Keeping terms that change the
phonon number by up to 1.
RWA: w; = (1, v, T A
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Individual lons. A prerequisite for synchronization
is that each individual ion undergoes self-oscillations in
their motion, so-called phonon lasing [15].

* For O* > AT : The mean field equations of motion show a limit

Yy
cycle solution with (n} = ST o2 0
n, 0.0
nm
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Before investigating synchronization in coupled ions,
we examine the correlations that build up between the
spin and phonon degrees of freedom in an individual ion
due to their strong coupling.
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Wigner distribution function
* Non-zero average amplitude.
1 * No phase preference

S}

0 Wigner distribution function — After projection

with one of Pauli-operator eigenstates
e 0. - It's eigenstates are correlated with
phonon number, but not with phase.
 0,,0, -Their eigenstates are correlated with
phase, but not with phonon number
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Coupled Tons. We now consider how synchronization
arises for two weakly coupled ions.

We look for a signature of synchronization by calculat-
ing the relative phase distribution P(¢) from the steady
state solution to the master equation when ions are in the
lasing regime and weakly coupled: J/+ = 1/10.
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the spin-phonon locking seen in Fig. 2(c) suggests
we may be able to infer the presence of synchronization
indirectly through measurements [19] of the spin degrees
of freedom alone.
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* Making the approximation (c}a;) = (o}) (a;) .
* Obtaining mean field relations (¢7) x —sing;, (¢?) o cos¢;.

* Correlation functions are C(X,Y) = 0 by definition.
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a
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=y
L

steady state phase distribution leads to: :
(J}T) o 0 (aioy) /dr,b cos o P(¢) = P, 0
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Conclusions

» Two phonon-lasing ions undergo synchronization when they are weakly coupled.

»Strong correlation develop between the internal degrees of freedom and the phonons in each
ion — This leads to correlations between the internal degrees of freedom of both ions when they
are coupled.

» These correlations carry information about the relative phase distribution of the ions and could
be used to infer the presence of synchronization.
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