arXiv:1503.08673

Open quantum system description of singlet-triplet qubits in quantum dots

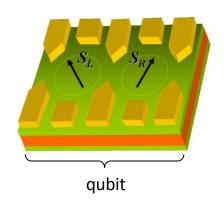
L. K. Castelano,¹ F. F. Fanchini,^{2,3} and K. Berrada³

¹Departamento de Fisica, Universidade Federal de Sao Carlos, Brazil

²Faculdade de Ciencias, UNESP - Universidade Estadual Paulista, Bauru, Brazil

³The Abdus Salam International Centre for Theoretical Physics, Miramare-Trieste, Italy

Singlet-Triplet Qubits (S-T₀)



Common approach:
Singlet-triplet qubits
in double quantum dots

Levy, PRL (2002) Petta *et al.*, Science (2005)

Basis states:

$$|S\rangle = \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}$$

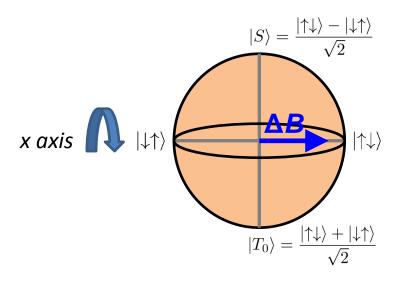
$$|T_0\rangle = \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}}$$

Singlet-Triplet Qubits (S-T₀)



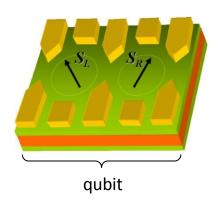
Common approach:
Singlet-triplet qubits
in double quantum dots

Levy, PRL (2002) Petta *et al.*, Science (2005)



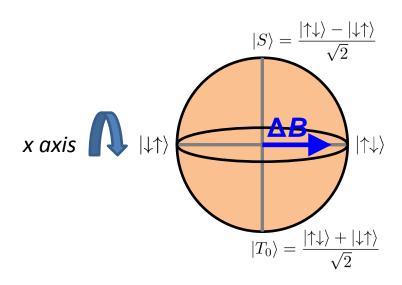
Magnetic field gradient

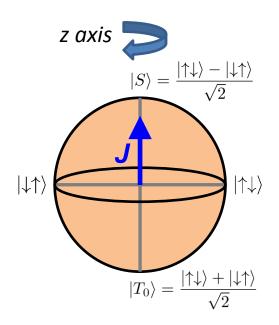
Singlet-Triplet Qubits (S-T₀)



Common approach:
Singlet-triplet qubits
in double quantum dots

Levy, PRL (2002) Petta *et al.*, Science (2005)





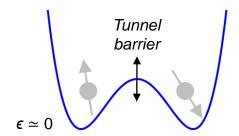
Magnetic field gradient

Exchange splitting

Exchange Coupling and Detuning

Control of J via tunnel barrier

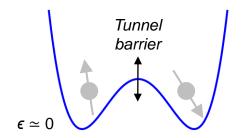
Loss/DiVincenzo, PRA (1998) Burkard/Loss/DiVincenzo, PRB (1999)



Exchange Coupling and Detuning

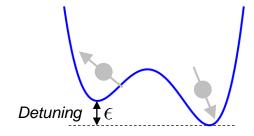
Control of J via tunnel barrier

Loss/DiVincenzo, PRA (1998) Burkard/Loss/DiVincenzo, PRB (1999)



Control of *J* via detuning

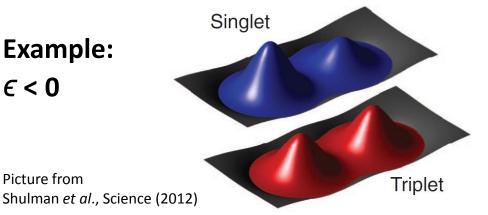
Petta et al., Science (2005)



Example:

 $\epsilon < 0$

Picture from



Different charge distribution due to Pauli exclusion

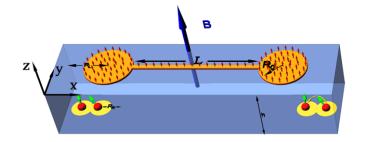
Two-Qubit Gates

Via exchange coupling and spin-orbit interaction

Klinovaja/Stepanenko/Halperin/Loss, PRB (2012)

Via ferromagnets (long-distance)

Trifunovic/Pedrocchi/Loss, PRX (2013) & arXiv:1305.2451

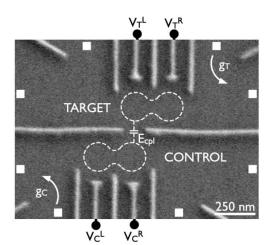


Via capacitive coupling through floating gates (long-distance)

Trifunovic et al., PRX (2012)

Via short-range capacitive coupling

van Weperen et al., PRL (2011) Shulman et al., Science (2012)



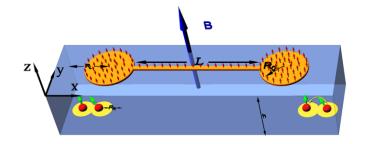
Two-Qubit Gates

Via exchange coupling and spin-orbit interaction

Klinovaja/Stepanenko/Halperin/Loss, PRB (2012)

Via ferromagnets (long-distance)

Trifunovic/Pedrocchi/Loss, PRX (2013) & arXiv:1305.2451



Via capacitive coupling through floating gates (long-distance)

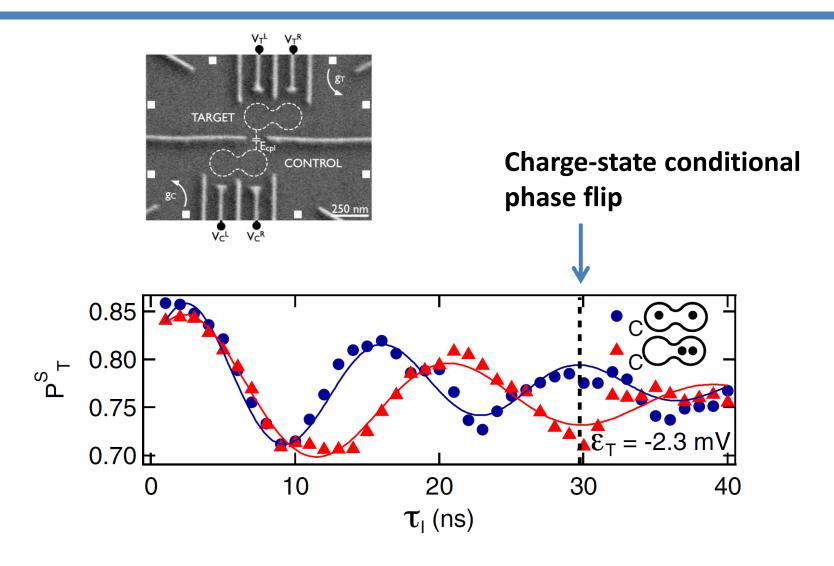
Trifunovic et al., PRX (2012)

Via short-range capacitive coupling

van Weperen et al., PRL (2011) Shulman et al., Science (2012)

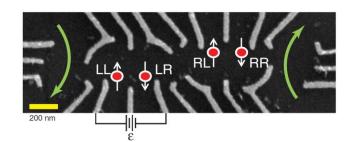


van Weperen et al., PRL (2011)



Allows implementation of the CPHASE gate

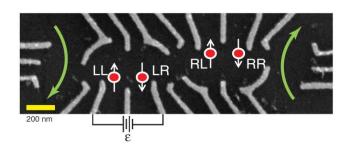
Shulman et al., Science (2012)



Main results:

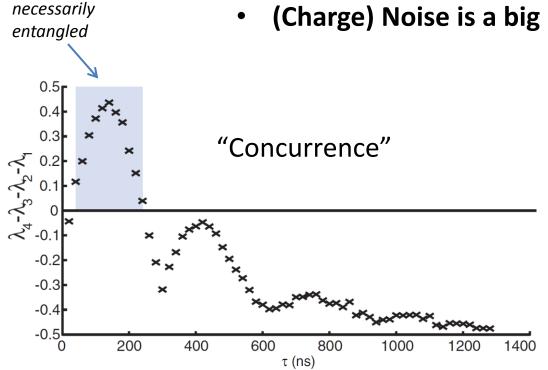
- Experimental verification that the CPHASE gate is entangling
- (Charge) Noise is a big problem

Shulman *et al.*, Science (2012)



Main results:

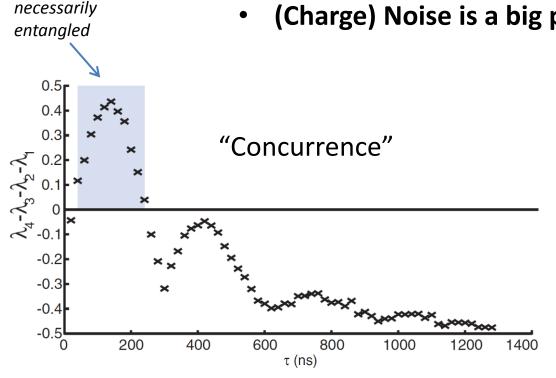
- **Experimental verification that** the CPHASE gate is entangling
- (Charge) Noise is a big problem

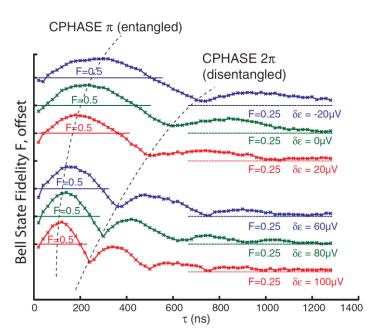


Shulman *et al.*, Science (2012)

Main results:

- **Experimental verification that** the CPHASE gate is entangling
- (Charge) Noise is a big problem





Concurrence

Hill/Wootters, PRL (1997) Shulman *et al.*, Science (2012)

Is the two-qubit state $|\psi\rangle$ entangled?

Is the two-qubit state $|\psi\rangle$ entangled?

- Take the density matrix ρ = |ψ><ψ|
- Calculate the matrix $R = \sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}$ $\tilde{\rho} = (\sigma_y \otimes \sigma_y)\rho^*(\sigma_y \otimes \sigma_y)$
- Calculate the four eigenvalues λ_i of the matrix R and define the largest eigenvalue as λ_{a}
- Get the concurrence $C(\rho)$ through the relation $C(\rho) = \max\{0, \lambda_4 \lambda_3 \lambda_2 \lambda_1\}$

Concurrence

Is the two-qubit state $|\psi\rangle$ entangled?

- Take the density matrix ρ = |ψ><ψ|
- Calculate the matrix $R = \sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}$ $\tilde{\rho} = (\sigma_y \otimes \sigma_y)\rho^*(\sigma_y \otimes \sigma_y)$
- Calculate the four eigenvalues λ_i of the matrix R and define the largest eigenvalue as λ_{a}
- Get the concurrence $C(\rho)$ through the relation $C(\rho) = \max\{0, \lambda_4 \lambda_3 \lambda_2 \lambda_1\}$

A **positive value of** *C* is a necessary and sufficient condition for **entanglement**

Castelano/Fanchini/Berrada, arXiv:1503.08673

The authors want to develop a (noise) model that reproduces the results of Shulman et al.

This model may then be used to describe the dissipative dynamics of singlet-triplet qubits in double quantum dots

Hamiltonian

$$\hat{H}_{ ext{2-qubit}} = rac{1}{2}igg[ig(J_1\sigma_z^{(1)}\otimes\mathbf{I} + J_2\,\mathbf{I}\otimes\sigma_z^{(2)}ig) + \ \hat{H} = \hat{H}_{ ext{2-qubit}} + \hat{H}_b + \hat{H}_{int} \ rac{J_{12}}{2}ig(\sigma_z^{(1)}\otimes\sigma_z^{(2)} - \sigma_z^{(1)}\otimes\mathbf{I} - \mathbf{I}\otimes\sigma_z^{(2)}ig) + \ rac{1}{2}ig(\Delta B_{z,1}\sigma_x^{(1)}\otimes\mathbf{I} + \Delta B_{z,2}\,\mathbf{I}\otimes\sigma_x^{(2)}ig)ig]$$

Hamiltonian

$$\hat{H} = \hat{H}_{2 ext{-qubit}} + \hat{H}_b + \hat{H}_{int}$$

$$\hat{H}_{ ext{2-qubit}} \; = \; rac{1}{2} \left[\left(J_1 \sigma_z^{(1)} \otimes \mathbf{I} + J_2 \; \mathbf{I} \otimes \sigma_z^{(2)}
ight) +
ight. \ rac{J_{12}}{2} \left(\sigma_z^{(1)} \otimes \sigma_z^{(2)} - \sigma_z^{(1)} \otimes \mathbf{I} - \mathbf{I} \otimes \sigma_z^{(2)}
ight) +
ight. \ rac{1}{2} \left(\Delta B_{z,1} \sigma_x^{(1)} \otimes \mathbf{I} + \Delta B_{z,2} \; \mathbf{I} \otimes \sigma_x^{(2)}
ight)
ight]$$

$$\hat{H}_b^C = \sum_k \omega_k b_k^{\dagger} b_k$$

$$\hat{H}_{\mathrm{int}}^{C} = \left(\sigma_{z}^{(1)} + \sigma_{z}^{(2)}\right) \mathcal{L}$$

$$\mathcal{L} = B + B^{\dagger}$$
 $B = \sum_{k} g_{k} b_{k}$

$$\hat{H}_b^I = \sum_{i=1}^2 \sum_k \omega_k^{(i)} b_k^{\dagger (i)} b_k^{(i)}$$

$$\hat{H}_{\rm int}^{I} = \sigma_z^{(1)} \mathcal{L}^{(1)} + \sigma_z^{(2)} \mathcal{L}^{(2)}$$

$$\mathcal{L}^{(i)} = B^{(i)} + B^{\dagger^{(i)}} \qquad B^{(i)} = \sum_{k} g_k^{(i)} b_k^{(i)}$$

Collective bath

Independent baths

Master Equation

Redfield equation

$$\frac{d\rho_I(t)}{dt} = -\int_0^t dt' \operatorname{Tr}_B \{ [H_I(t), [H_I(t'), \rho_B \rho_I(t)]] \}$$

Master Equation

Redfield equation

$$\frac{d\rho_I(t)}{dt} = -\int_0^t dt' \operatorname{Tr}_B \{ [H_I(t), [H_I(t'), \rho_B \rho_I(t)]] \}$$

Breuer and Petruccione

The Theory of Open Quantum Systems

Chapter 3

Master Equation

reduced density matrix for the two qubits

Redfield equation

Markov approximation:

$$\frac{d\rho_I(t)}{dt} = -\int_0^t dt' \text{Tr}_B \left\{ [H_I(t), [H_I(t'), \rho_B \rho_I(t)]] \right\}$$

$$H_I(t) = U^{\dagger}(t)U_B^{\dagger}(t)\hat{H}_{\mathrm{int}}U_B(t)U(t)$$

$$U(t) = \exp\left(-i\hat{H}_{2\text{-qubit}}t\right)$$

$$U_B(t) = \exp\left(-i\hat{H}_bt\right)$$

Assumption:

$$\rho_B = \frac{1}{Z} \exp(-\beta \hat{H}_b)$$

$$Z = \operatorname{Tr}_B \left[\exp(-\beta \hat{H}_b) \right]$$

$$\beta = 1/(k_B T)$$

oscillator bath initially decoupled

Parameters

Parameters and pulse sequences are chosen based on the experiment

Typical parameters are: T = 50 mK

$$J_1/2\pi \approx 280 \mathrm{MHz}$$
 $J_2/2\pi \approx 320 \mathrm{MHz}$

$$\Delta B_{z,i}/2\pi \approx 30 \mathrm{MHz}$$

The qubit-bath coupling is parametrized via the spectral function

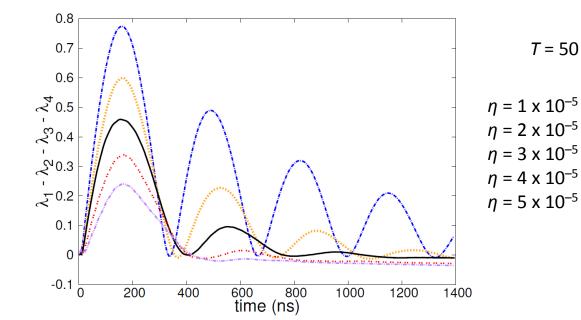
$$J(\omega) = \eta \omega \exp(-\omega/\omega_c)$$

Good agreement between theory and experiment found for η around 3 x 10⁻⁵

"After detailed analysis (not shown here) we find, as expected, that low cutoff frequencies are unable to reproduce the experimental data and we checked that all results presented in this work do not change significantly if $\omega_c > 2 \times 10^4$ MHz"

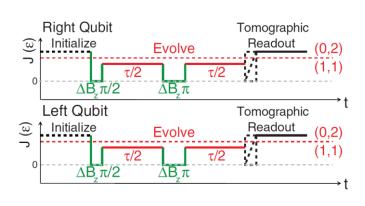
 $\rightarrow \omega_c$ = 2 x 10⁴ MHz in the simulation

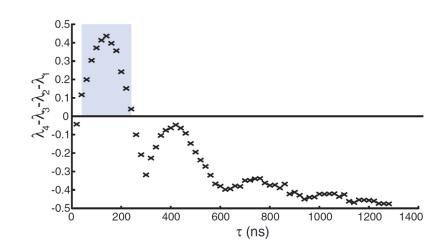
Numerical solution:



Common bath

Experiment:

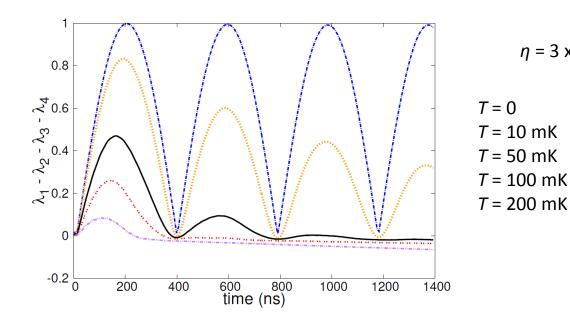




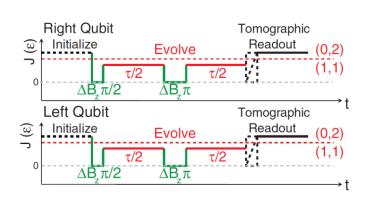
T = 50 mK

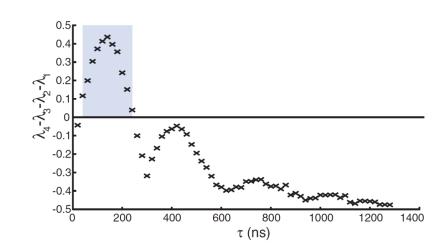
Numerical solution:

Common bath



Experiment:



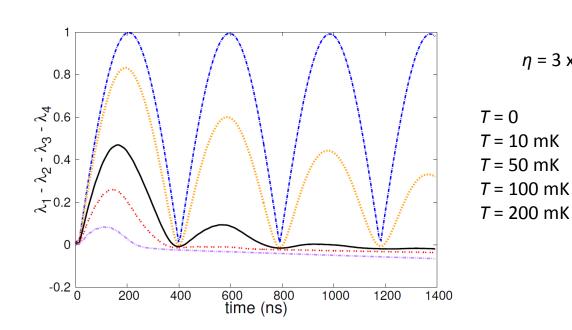


 $\eta = 3 \times 10^{-5}$

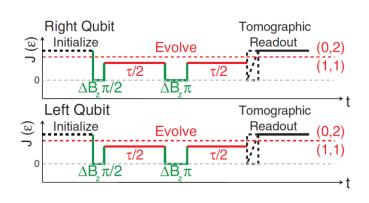
Numerical solution:

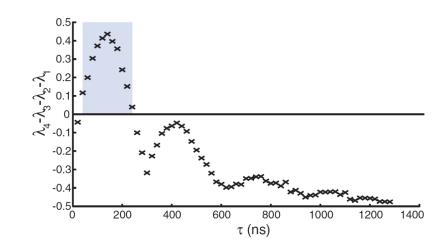
Common bath

Does not describe the experiment!



Experiment:

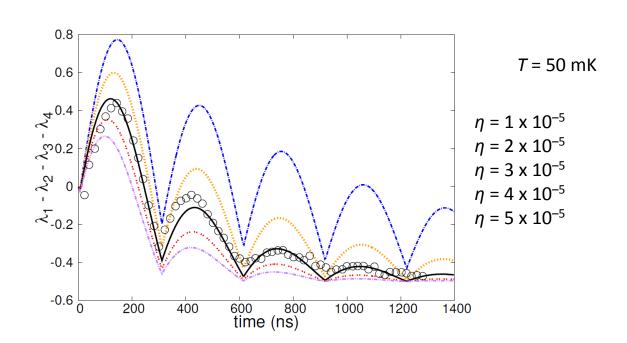




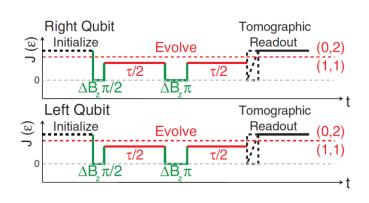
 $\eta = 3 \times 10^{-5}$

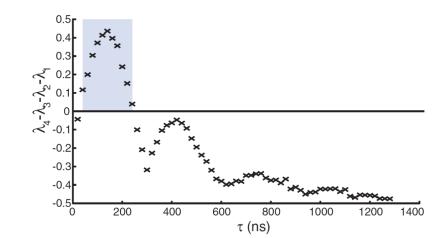
Numerical solution:

Independent environments



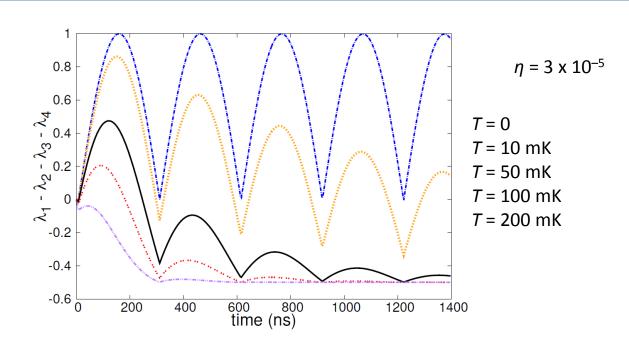
Experiment:



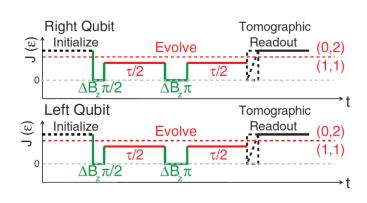


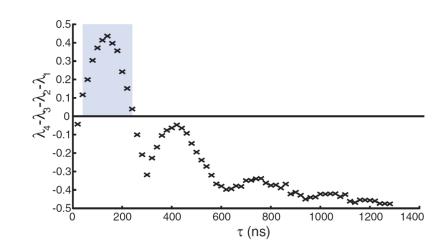
Numerical solution:

Independent environments



Experiment:

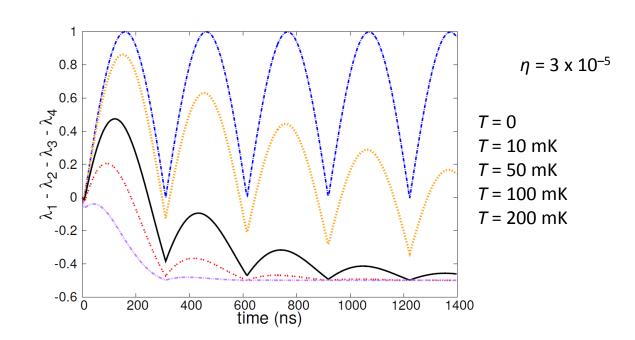




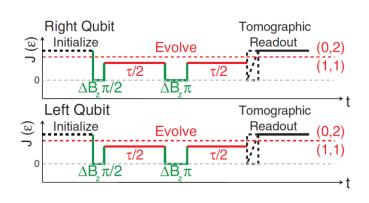
Numerical solution:

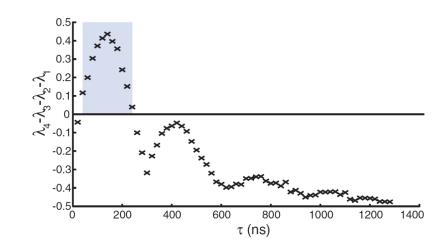
Independent environments

Does describe the experiment!

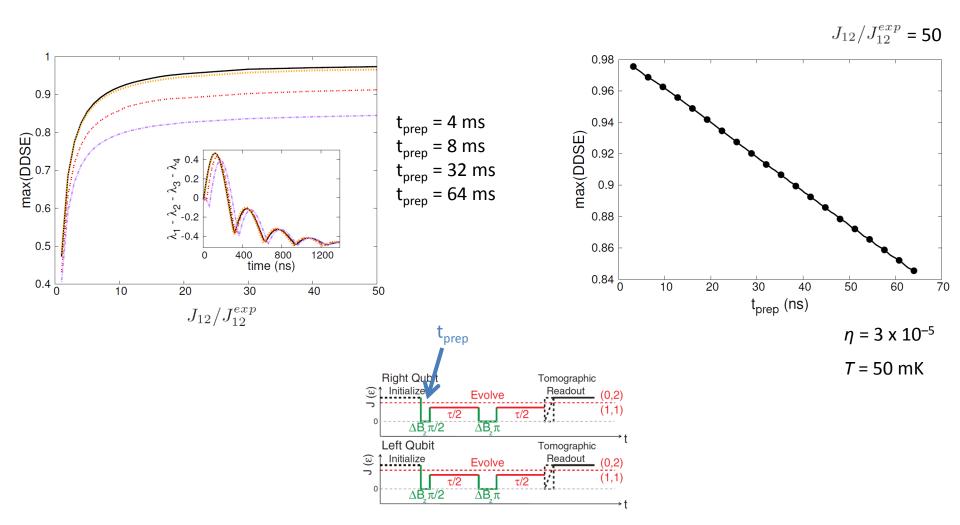


Experiment:

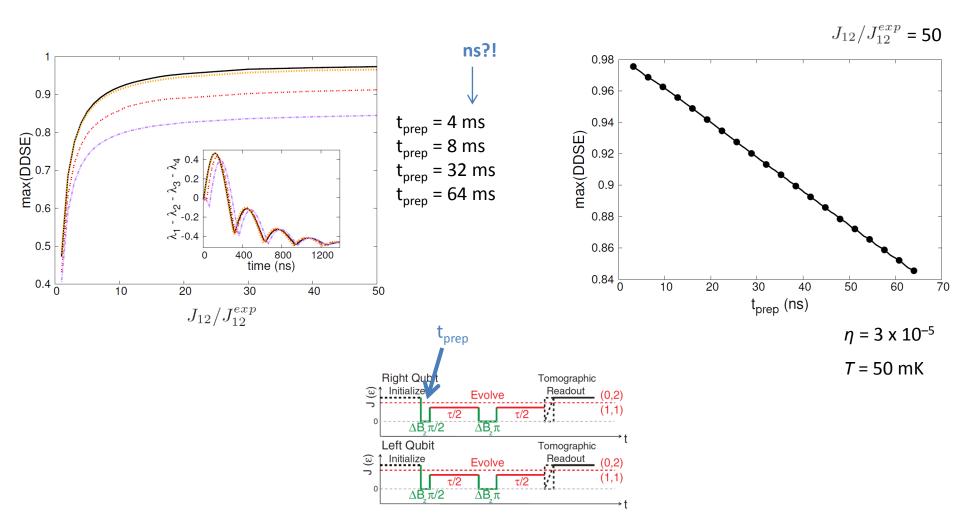




Using the model based on independent environments, the authors show that **further improvements are possible**:



Using the model based on independent environments, the authors show that **further improvements are possible**:



Conclusions

- Using an open quantum system description, the authors develop a model to describe the data of Shulman et al., Science (2012)
- The model does (does not) describe the experiment when the qubits are coupled to independent environments (a common bath)
- The experimental results may be improved, particularly by increasing the capacitive coupling and by reducing the preparation time