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Abstract: We develop a microscopic theory describing a quantum im-
purity whose rotational degree of freedom is coupled to a many-particle
bath. We approach the problem by introducing the concept of an “angu-
lon" —a quantum rotor dressed by a quantum field — and reveal its quasi-
particle properties using a combination of variational and diagrammatic
techniques. Our theory predicts renormalisation of the impurity rotational
structure, such as observed in experiments with molecules in superfluid
helium droplets, in terms of a rotational Lamb shift induced by the many-
particle environment. Furthermore, we discover a rich many-body-induced
fine structure, emerging in rotational spectra due to a redistribution of
angular momentum within the quantum many-body system.
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Setup (1)/(11)

A rotating impurity in a
many-body system (MBS)
@ MBS is interacting bosons,
treated in Bogoliubov
approximation

@ Impurity is not moving besides '
its rotation

Vi os (')

o Example: Impurity is a linear
rotor

@ Impurity-MBS coupling depends
on orientation
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Setup (11)/(11)

Total Hamiltonian:
H = Hbos + Himp + Himp—bos

o Impurity: Himp = BJ?

@ Bosons:

Hoos = Y _ erdl i
k

At AT A A
+ a 3, 3a
&bb E k/—q9k+qk’ 9k y

o (1)

kvk/vq

@ Impurity-boson coupling:
Himp—bos = L
Zk,q Vimp-bos(qa 07 (b)él_qék




Results: Derivation of effective theory

Strategy

@ Treat (many-body) bath bosons with Bogoliubov theory and
write their Hamiltonian in terms of phonons.

© Express the impurity-boson coupling and the total
Hamiltonian with a “rotation-friendly” basis.

© Solution of the effective theory with an ansatz and a
variational treatment equivalent to a diagrammatic approach
that also allows for the computation of the excitations and the
spectral function.
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Results: Derivation of effective theory

Effective Bogoliubov Hamiltonian

Bogoliubov transform — “phonons” with dispersion wy.

H = B2+ 3" wicb{ Bt v/n Yy Vimp-bos (k. 0. 6) /% (b +bT )
Dropped ~ IAJ,T(IA)k, which is suppressed by 1/y/n

Dropped mean-field shift ~ V/(0)n

Note: Y, = [ d3k/(2r)3.
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Results: Derivation of effective theory

Hamiltonian in spherical basis (I)/(II)

@ Express creation/annihilation operators in spherical harmonics:
~ 27)3/2 ~ o
Bl = B 57, By, 17 Yau(©k, )
bl = Gy [ dPkdOy sin Oy By it Y7, (O, Pi)

@ )\ =the angular momentum (AM) of the bosonic excitation
1 = AM projection onto the laboratory-frame z-axis.

@ Commutation relations:
B, B,] = (27)35®) (k — K') and
[bk)\,ua bl/)\/“/] = (5(/( — k/)éA)\’(SﬂH'
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Results: Derivation of effective theory

Hamiltonian in spherical basis (I1)/(I1)

Transformed Hamiltonian:

H = B+ web], b,

kA
+ > Uik [YM (0, 9)b},, + Yau(d, &)Bk,\ﬂ}
kA
o Note: >, = [ dk
° 2
UA(K) = Ta(he/me o = o [cS | a2
e Note: OnIy A = 0,1 are considered.
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Results: Variational/diagrammatic approach; spectral function.

Variational /diagrammatic treatment (1)/(111)

@ Ansatz:

1 2 .
) = Z}47 (0) [LM) + >~ BEMCEM BL, . [0) Lim)

kAp
jm

|0) = vacuum of bath excitations; the angulon quasiparticle
weight Z is given by normalisation Zjy =1 — 3, ); ]ﬂk)u

e Note: [¢)) is an eigenstate of the total AM,

L2|y)) = L(L + 1)|¢)), and its projection on the laboratory
z-axis, Lz|) = M)

° ij Ay 1s @ Clebsch-Gordan coefficient.

M is irrelevant in the absence of external fields.
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Results: Variational/diagrammatic approach; spectral function.

Variational /diagrammatic treatment (I1)/(111)

@ Minimization of E = (¢| H|vy)/{(1|1¢), where (1]1)) = 1 yields
E; from [GI"8(E)] ' =0.

@ Self-consistent equation: [Ging(E)]_l =[GE)|™t — Z.(E),
where [GX(E)] ™ = —E + BL(L+ 1)

@ Self energy:

o0 12
22+1 U,\(k)2 [qo,xo}

Y (E)= )
(E) kz/\; 4r  Bj(j+1) — E + wi

o Note: equivalent to Dyson equation G"& = G° 4+ GO¥X. G"e

kA
angulon quantum many-body field ‘.‘>

rotor v AN
with diagram: — ~ D @S5
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Results: Variational/diagrammatic approach; spectral function.

Variational /diagrammatic treatment (I11)/(111)

e Equivalence to diagrammatic treatment computation of
spectrum from retarded Green's function:

G*(E) = G;"(E + i0™)

@ Imaginary part of self-energy of G[ed:

ImZ i (E ZG(E Bj(j +1)) { L0 Aor
Ako

2/\ + 1 _
Uy (ko)?|(Owk/OK) keio| 1

@ ko gives the roots of E —wy + Bj(j+1) =0
@ Spectral function A;(E) = Im[G[*'(E)]
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Results: Variational/diagrammatic approach; spectral function.

Spectral function & rotational Lamb shift

0 | |
‘ — (7
AL(E) First-kind Second-kind

0

anisotropic (u,)

ARS — (E, — By)/B — L(L+1)



Conclusions

o Effective theory/Hamiltonian to deal with rotating impurities

@ Redistribution of AM between impurity and bath

@ Rich physics of the angulon quasiparticle
e many-body induced fine structure of 1st kind
Lio—{LLo L:O} and 2nd kind L; o = L,

e rotational Lamb shift
Open questions: What if the many-body bath cannot be accurately
treated with the Bogoliubov approach and/or is not bosonic?
What about superposition states of the rotating impurity? What
about the contributions of higher harmonics A > 17
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Conclusions

Impurity-boson coupling in a spherical basis (1)

° Vimp—bos(Qyéa ¢) J_"[R(H d)) imp- bos( )], here, R is a
rotation and F the Fourier transform.

@ Expand with spherical harmonics: >, uxfi(r") Yao(©', ¢’)
@ Use Wigner rotation matrices D/;\V to express Y's:

Y20(0', ') = 30, D (6,0,4) Yau(©, ®), here ($,6,7) are
Euler angles.

@ For a linear rotor fAy = 0. Using
D,Li\ék((g7é\7 0) = 2)\+1 Y)\“(Q ¢) one gets:

Vimp-bos(r7 é? (g) = Z,\/,L \/ 2)\+1 U)\f/\( )Y/\,LL(@a (D)Y)\H(é, Qg)
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Conclusions

Impurity-boson coupling in a spherical basis (Il)

e To obtain \/imp_bos(k,é, QAS) compute Fourier transform of

Vimp—bos(ra é? &) = E/\M \/ 2)\+1 U)\f)\( )Y/\,u(ea q))Y/\,u(éa é)

@ In the Fourier transform, expand e ikr

harmonics:
Vlmp—bos k 0 Qb fds imp- bos é\v Qg) e—ikr
= ZM(27T)3/2 AV (k )qu(@k,%)\ﬁu(@ %)
e Note: k = (k, Ok, Py) is the momentum vector in the
laboratory frame.

o V\(k) = u\232//2X+1 [;° dr r?A(r)jx(kr), with jy(kr) the
spherical Bessel function.

in terms of spherical
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