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Rotation of quantum impurities
in the presence of a many-body environment

PRL 114, 203001 (2015)
by Richard Schmidt and Mikhail Lemeshko

Abstract: We develop a microscopic theory describing a quantum im-
purity whose rotational degree of freedom is coupled to a many-particle
bath. We approach the problem by introducing the concept of an “angu-
lon” – a quantum rotor dressed by a quantum field – and reveal its quasi-
particle properties using a combination of variational and diagrammatic
techniques. Our theory predicts renormalisation of the impurity rotational
structure, such as observed in experiments with molecules in superfluid
helium droplets, in terms of a rotational Lamb shift induced by the many-
particle environment. Furthermore, we discover a rich many-body-induced
fine structure, emerging in rotational spectra due to a redistribution of
angular momentum within the quantum many-body system.
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Setup (I)/(II)

A rotating impurity in a
many-body system (MBS)

MBS is interacting bosons,
treated in Bogoliubov
approximation

Impurity is not moving besides
its rotation

Example: Impurity is a linear
rotor

Impurity-MBS coupling depends
on orientation
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Setup (II)/(II)

Total Hamiltonian:
H = Hbos + Himp + Himp-bos

Impurity: Himp = B Ĵ2

Bosons:

Hbos =
∑
k

εkâ
†
kâk

+ gbb

∑
k,k′,q

â†k′−qâ
†
k+qâk′ âk

Impurity-boson coupling:
Himp-bos =∑

k,q Vimp-bos(q, θ̂, φ̂)â†k−qâk
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Strategy

1 Treat (many-body) bath bosons with Bogoliubov theory and
write their Hamiltonian in terms of phonons.

2 Express the impurity-boson coupling and the total
Hamiltonian with a “rotation-friendly” basis.

3 Solution of the effective theory with an ansatz and a
variational treatment equivalent to a diagrammatic approach
that also allows for the computation of the excitations and the
spectral function.
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Effective Bogoliubov Hamiltonian

Bogoliubov transform → “phonons” with dispersion ωk .

H = BJ2+
∑

k ωk b̂
†
kb̂k+

√
n
∑

k Vimp-bos(k, θ̂, φ̂)
√

εk
ωk

(b̂k+b̂†−k)

Dropped ∼ b̂†kb̂k, which is suppressed by 1/
√
n

Dropped mean-field shift ∼ V (0)n

Note:
∑

k ≡
∫
d3k/(2π)3.
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Hamiltonian in spherical basis (I)/(II)

Express creation/annihilation operators in spherical harmonics:

b̂†k = (2π)3/2

k

∑
λµ b̂

†
kλµ i−λ Yλµ(Θk ,Φk)

b̂†kλµ = k
(2π)3/2

∫
dΦkdΘk sin Θk b̂†k iλ Y ∗λµ(Θk ,Φk)

λ ≡the angular momentum (AM) of the bosonic excitation
µ ≡ AM projection onto the laboratory-frame z-axis.

Commutation relations:
[b̂k, b̂

†
k′ ] = (2π)3δ(3)(k− k′) and

[b̂kλµ, b̂
†
k ′λ′µ′ ] = δ(k − k ′)δλλ′δµµ′
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Hamiltonian in spherical basis (II)/(II)

Transformed Hamiltonian:

H = BJ2 +
∑
kλµ

ωk b̂
†
kλµb̂kλµ

+
∑
kλµ

Uλ(k)
[
Y ∗λµ(θ̂, φ̂)b̂†kλµ + Yλµ(θ̂, φ̂)b̂kλµ

]
Note:

∑
k ≡

∫
dk

Uλ(k) = Ṽλ(k)k
√
nεk/ωk = uλ

[
8nk2εk

ωk (2λ+1)

]1/2 ∫
drr2fλ(r)jλ(kr).

Note: Only λ = 0, 1 are considered.
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Variational/diagrammatic treatment (I)/(III)

Ansatz:

|ψ〉 = Z
1/2
LM |0〉 |LM〉+

∑
kλµ
jm

βLMkλjC
LM
jm,λµb̂

†
kλµ |0〉 |jm〉

|0〉 ≡ vacuum of bath excitations; the angulon quasiparticle
weight Z is given by normalisation ZLM ≡ 1−

∑
kλj |βLMkλj |2

Note: |ψ〉 is an eigenstate of the total AM,
L̂2|ψ〉 = L(L + 1)|ψ〉, and its projection on the laboratory
z-axis, L̂z |ψ〉 = M|ψ〉
CLM
jm,λµ is a Clebsch-Gordan coefficient.

M is irrelevant in the absence of external fields.
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Variational/diagrammatic treatment (II)/(III)

Minimization of E = 〈ψ|H |ψ〉/〈ψ|ψ〉, where 〈ψ|ψ〉 = 1 yields

EL from
[
G ang
L (EL)

]−1
= 0.

Self-consistent equation:
[
G ang
L (E )

]−1
= [G 0

L (E )]−1 − ΣL(E ),
where [G 0

L (E )]−1 = −E + BL(L + 1)

Self energy:

ΣL(E ) =
∑
kλj

2λ+ 1

4π

Uλ(k)2
[
C j0
L0,λ0

]2

Bj(j + 1)− E + ωk
.

Note: equivalent to Dyson equation G ang = G 0 + G 0ΣG ang

with diagram:
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Variational/diagrammatic treatment (III)/(III)

Equivalence to diagrammatic treatment computation of
spectrum from retarded Green’s function:

G ret
L (E ) = G ang

L (E + i0+)

Imaginary part of self-energy of G red
L :

ImΣret
L (E ) =

∑
λjk0

θ(E − Bj(j + 1))
[
C j0
L0,λ0

]2

× 2λ+ 1

4
Uλ(k0)2|(∂ωk/∂k)k=k0 |

−1

k0 gives the roots of E − ωk + Bj(j + 1) = 0

Spectral function AL(E ) = Im[G ret
L (E )]
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Spectral function & rotational Lamb shift
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Effective theory/Hamiltonian to deal with rotating impurities

Redistribution of AM between impurity and bath

Rich physics of the angulon quasiparticle

many-body induced fine structure of 1st kind
LL,0 → {L−L,0, L

+
L,0} and 2nd kind L−L,0 → L−L−1,1

rotational Lamb shift

Open questions: What if the many-body bath cannot be accurately
treated with the Bogoliubov approach and/or is not bosonic?
What about superposition states of the rotating impurity? What
about the contributions of higher harmonics λ > 1?

Axel U. J. Lode Rotating impurities & the angulon



Setup
Results: Derivation of effective theory

Results: Variational/diagrammatic approach; spectral function.
Conclusions

Impurity-boson coupling in a spherical basis (I)

Vimp-bos(q, θ̂, φ̂) = F [R(θ̂, φ̂)Vimp-bos(r
′)]; here, R is a

rotation and F the Fourier transform.

Expand with spherical harmonics:
∑

λ uλfλ(r ′)Yλ0(Θ′,Φ′)

Use Wigner rotation matrices Dλ
µν to express Y s:

Yλ0(Θ′,Φ′) =
∑

µD
λ∗
µ0 (φ̂, θ̂, γ̂)Yλµ(Θ,Φ), here (φ̂, θ̂, γ̂) are

Euler angles.

For a linear rotor γ̂ = 0. Using

Dλ∗
µ0 (φ̂, θ̂, 0) =

√
4π

2λ+1Yλµ(θ̂, φ̂), one gets:

Vimp-bos(r, θ̂, φ̂) =
∑

λµ

√
4π

2λ+1uλfλ(r)Yλµ(Θ,Φ)Yλµ(θ̂, φ̂).
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Impurity-boson coupling in a spherical basis (II)

To obtain Vimp-bos(k, θ̂, φ̂), compute Fourier transform of

Vimp-bos(r, θ̂, φ̂) =
∑

λµ

√
4π

2λ+1uλfλ(r)Yλµ(Θ,Φ)Yλµ(θ̂, φ̂).

In the Fourier transform, expand e−ikr in terms of spherical
harmonics:
Vimp-bos(k, θ̂, φ̂) ≡

∫
d3r Vimp-bos(r, θ̂, φ̂) e−ikr

=
∑

λµ(2π)3/2i−λṼλ(k)Yλµ(Θk ,Φk)Yλµ(θ̂, φ̂)

Note: k ≡ (k ,Θk ,Φk) is the momentum vector in the
laboratory frame.

Ṽλ(k) = uλ23/2/
√

2λ+ 1
∫∞

0 dr r2fλ(r)jλ(kr), with jλ(kr) the
spherical Bessel function.
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