
``Thermal vector potential theory of transport    
           induced by temperature gradient’’ 

 A microscopic formalism to calculate thermal transport coefficients is presented based on a 
thermal vector potential.  

 Time-derivative is related to a thermal force.  
 
 The mathematical structure for thermal transport coefficients are shown to be identical with 

the electric ones if the electric charge is replaced by energy.  
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                       -Related work- 
``Theory of Thermal Transport Coefficients'' 
 J. M. Luttinger, Phys. Rev. 135, A1505 (1964) 
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  The Main Purpose 
[Temperature gradient] = [Statistical mechanical quantity] 

To provide the Hamiltonian that includes the temperature gradient 

[Hamiltonian] = [(Quantum) Mechanical quantity] 

 Evaluate thermal coefficient by using the purely Hamiltonian formalism 
 i.e., a perturbation theory or green’s functions  
              by treating thermal gradient as an external field 

 Boltzmann factor  Statistical mechanical (i.e., thermally) averaged value 

 Heisenberg’s E.O.M  time-revolution of physical quantities 



ℋ =  𝑑𝒓 𝐵 𝒓 𝑎†𝑎 

𝐼𝑥 = −𝐺𝜕𝑥𝐵 

ℋ =  𝑑𝒓 𝑇 𝒓 𝑎†𝑎 

𝐽𝑥 = −𝜅𝜕𝑥𝑇 

 Hamiltonian Formalism 
Single system (i.e., bulk) 

𝐵 = 𝜇; chemical potential 

𝑎 𝒓 , 𝑎† 𝒓′ = 𝛿(𝒓 − 𝒓′) 

𝐵 𝒓  
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 temp. 
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   Guiding Principle 

 ``Luttinger’s Principle’’ 

 ``Gravitational potential’’ 
 Rewrite ``Boltzmann factor’’  

 J. M. Luttinger, Phys. Rev. 135, A1505 (1964) 

To treat thermal gradient as an external field 



 Luttinger’s Principle 

 Boltzmann factor 

𝑃(𝐸) ∝ 𝑒−𝛽  𝑑𝒓 𝐻(𝒓) 
ℋ =  𝑑𝒓 𝐻(𝒓) 

𝛽 = 1/(𝑘𝐵𝑇) 
𝑇 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑇 ≠ 𝑇(𝒓) 

𝑒−𝛽  𝑑𝒓 𝐻(𝒓) ≡ 𝑒−ℒ  𝑑𝒓Ψ(𝒓)𝜀 

ℒ; a constant 

𝜵Ψ 𝒓 = 𝜵𝑇/𝑇 

𝜳; gravitational potential; 

𝜀; local energy density 

 Statistical Mechanics 

𝛽ℋ = 𝛽 𝑑𝒓 𝐻(𝒓) ≡ ℒ 𝑑𝒓 Ψ(𝒓)𝜀 

 Key quantity; PRODUCT 

 ``TRICK’’ that has NO microscopic reasons 
 J. M. Luttinger, Phys. Rev. 135, A1505 (1964) 

TERMINOLOGY 
    (I explain later) 



             POINT 

𝑇 ≠ 𝑇(𝒓) 

𝑒−𝛽  𝑑𝒓 𝐻(𝒓) 
 𝜵Ψ 𝒓 = 𝜵𝑇/𝑇 

 J. M. Luttinger, Phys. Rev. 135, A1505 (1964) 

𝑒−ℒ  𝑑𝒓Ψ(𝒓)𝜀 ≡ 
𝛽 = 𝑘B𝑇 

𝑇 = 𝑇(𝒓) 

 Uniform temperature 
𝛻𝑇 = 0 

 Local temperature 
𝛻𝑇 ≠ 0 



 Gravitational Potential ? 

ℒ; a constant 

𝛻Ψ 𝒓 = 𝛻𝑇/𝑇 𝜳; gravitational potential; 

𝜀; local energy density 
𝛽ℋ = 𝛽 𝑑𝒓 𝐻(𝒓) ≡ ℒ 𝑑𝒓 Ψ(𝒓)𝜀 

 Special relativity 

      Albert Einstein 
(Ph. D; Univ. of Zurich) 

𝐸 = 𝑚𝑐2 

 No need to worry about the terminology ``Gravitational’’ 

 Key quantity; PRODUCT 

An energy density 𝜀 behaves as if it had a mass density 𝜀/𝑐2,  
     (as far as its interaction with a gravitation field goes. ) 
 Call Ψ/𝑐2 or Ψ ``the gravitational potential’’  

In analogy to 

 J. M. Luttinger, Phys. Rev. 135, A1505 (1964) 

 (No positive reason to use gravitational, just say potential, enough I think.) 



                   Idea 

ℒ; a constant 

𝛻Ψ 𝒓 = 𝛻𝑇/𝑇 𝜳; gravitational potential; 

𝜀; local energy density 
𝛽ℋ = 𝛽 𝑑𝒓 𝐻(𝒓) ≡ ℒ 𝑑𝒓 Ψ(𝒓)𝜀 

 Key quantity; PRODUCT 

 Just as the space- and time-varying external electric potential produced 
electric currents and density variations, so a varying gravitational field will 
produce, in principle, energy flows and temperature fluctuations. 

 Clearly a varying will give rise to a varying energy density, which, 
in turn, will correspond to a varying temperature. 

 J. M. Luttinger, Phys. Rev. 135, A1505 (1964) 



 ``Low-energy effective theory in the bulk for transport in a topological phase'' 
     Barry Bradlyn, N. Read 
     arXiv:1407.2911[Phys. Rev. B 91, 125303 (2015)] 
 
 
 ``Heat transport as torsional responses and Keldysh formalism in a curved spacetime'' 
     Atsuo Shitade 
     arXiv:1310.8043[Prog. Theor. Exp. Phys. 2014, 123I01 (2014)] 

       Similar Approach 

 Analogy of general relativity that if an invariance under time translation is imposed locally. 
A vector potential arises from Luttinger’s scalar potential. 
They are described by a gauge invariant theory.  
 Wiedemann-Franz law.  
 But still, The origin of the invariance under local time translation was not argued.  



``Thermal vector potential theory of transport induced by temperature gradient’’ 
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 Classical charged particles 

 In thermally-driven transport, it can be expected that a thermal 
force proportional to 𝜵𝑇 is represented by a vector potential. 

``Thermal vector potential 𝑨𝑇’’ 

An expectation from an example 



         STRATEGY 
To propose a formalism describing thermal effects by a thermal vector potential 

 Carry out a derivation of a thermal vector potential form of the interaction 
Hamiltonian by looking for a Hamiltonian equivalent to the Luttinger’s Hamiltonian. 

 Derive expressions for electric current and energy current  
      by use of conservation laws. 

𝐻𝐴𝑇 ≡ 𝐻𝐴𝑇(𝐴𝑇) → 𝐻𝐿 
𝑨𝑇; thermal vector potential 

; Luttinger Hamiltonian 



       Test Hamiltonian 

𝒋𝜀; energy current 

𝐻′ L = − 𝑑𝑟 Ψ(𝛻 ∙ 𝒋𝜀) 

Energy conservation law 

𝐻′ L = 𝐻 L 

’ 



 Thermal Vector Potential 

’ 

 To obtain the form between a vector potential 𝐴𝑇 and energy current 

 Look for the Hamiltonian𝐻𝐴𝑇  

’ 

Thermal vector potential; 

Temperature gradient; 



ℋ =  𝑑𝒓 𝐵 𝒓 𝑎†𝑎 

𝐼𝑥 = −𝐺𝜕𝑥𝐵 

ℋ =  𝑑𝒓 𝑇 𝒓 𝑎†𝑎 

𝐽𝑥 = −𝜅𝜕𝑥𝑇 

 Hamiltonian Formalism 
Single system (i.e., bulk) 

𝐵 = 𝜇; chemical potential 

𝑎 𝒓 , 𝑎† 𝒓′ = 𝛿(𝒓 − 𝒓′) 

𝐵 𝒓  
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T(r) 

  Low 
 temp. 

 High 
 temp. 

 ? 



ℋ =  𝑑𝒓 𝐵 𝒓 𝑎†𝑎 

𝐼𝑥 = −𝐺𝜕𝑥𝐵 𝐽𝑥 = −𝜅𝜕𝑥𝑇 

 Hamiltonian Formalism 
Single system (i.e., bulk) 

𝐵 = 𝜇; chemical potential 

𝑎 𝒓 , 𝑎† 𝒓′ = 𝛿(𝒓 − 𝒓′) 

𝐵 𝒓  

 x  x 

T(r) 

  Low 
 temp. 

 High 
 temp. 



             Application 
Ferromagnetic insulator (i.e., magnonic bulk systems)  

arXiv:1505.01908 

[W. Jiang et al., Phys. Rev. Lett. 110, 177202 (2013)] 

Standard Boltzmann transport equation 

 By using the thermal vector potential Hamiltonian and Green function formalism 

 (i = x, y, z) 



           DISCUSSION 
 In the electromagnetic case, the minimal form is imposed by a U(1) gauge invariance.  
 
 For the thermal vector potential, in contrast, there is no gauge invariance in the strict sense 

since the energy conservation arises from a translational invariance with respect to time. 

A ‘gauge invariance’ as a result of the energy conservation law. 

Concerning steady state properties; 

[Luttinger’s potential Ψ] ⇔[Thermal vector potential 𝑨𝑇] 

We may assign 



              SUMMARY 
``Thermal vector potential theory of transport  induced by temperature gradient’’ 
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                     -Related work- 
``Theory of Thermal Transport Coefficients'' 
 J. M. Luttinger, Phys. Rev. 135, A1505 (1964) 

 Based on the Luttinger’s principle, thermal vector potential has been introduced 
and in terms of it, the Luttinger’s Hamiltonian has been rewritten. 

 Still, the microscopic origin of this formalism and the Luttinger’s principle is lacking. 

 Using the Hamiltonian formalism (i.e., Green functions), a coefficient has been 
evaluated and it has been verified that it reduces to the same result given by the 
standard Boltzmann transport theory.  


