Tunable Spin-Qubit Coupling Mediated by a Multielectron Quantum Dot

V. Srinivasa, H. Xu, and J.M. Taylor; PRL 114, 226803 (2015)

Marcel Serina

June 30, 2015

CMT journal club

Marcel Serina Tunable Spin-Qubit Coupling Mediated by a Multielectron QD

Table of contents

3 Charge noise and inhomog. g factor analysis

4 Conlusions

Current context

- Single spins as qubits in impurity atoms, quantum dots
- Scalable long-range coupling scheme is needed
- Mediators: optical cavities, MW resonators, floating metallic and ferromagnetic couplers, spin chains, SC systems
- Triple dot setup. Center dot-mediator of interactions.
- Effective exchange from electron cotunelling between the outer dots¹
- Drawback-large virtual energy cost

¹G.Platero et al., Nat. Nanotech. 8, 261 (2013)

Recent proposal

- Mediator: two-level quantum dot with two electrons.
- Spin qubits reside on single-level impurity atoms
- Related to spin qubits in quantum dots
- Multiorbital Hubbard model for the linear three site system.
- Impurities near ionization points (by gate voltages)

Model I

$$H_{\rm hub} = H_n + H_t$$

$$\begin{split} H_n &= \sum_i \epsilon_i n_i + \frac{U_i}{2} n_i (n_i - 1) + \sum_{i \neq j} \frac{K_{ij}}{2} n_i n_j + J_{12} \sum_{\sigma, \sigma'} c_{1,\sigma}^{\dagger} c_{2,\sigma'}^{\dagger} c_{1,\sigma'} c_{2,\sigma}, \\ H_t &= -\sum_{i=1,2} \sum_{\sigma} \left(t_{Li} c_{i,\sigma}^{\dagger} c_{L,\sigma} + t_{Ri} c_{i,\sigma}^{\dagger} c_{R,\sigma} + \text{h.c.} \right) \end{split}$$

with
$$i, j = L, R, 1, 2$$

Model II

 E₀ = ε_L + ε_R + 2ε₁ + U₁ + 4K₁, energy of (1,2,1) states without tunneling set as an energy origin. Δ_{L(R)} = ε₂ - ε_{L(R)} + W; W = -2K₁ + K₂ + 2K₁₂ - J₁₂
Δ_M = ε₂ - ε₁ + W - U₁ + K₂ - K₁₂; Δ_J = Δ_M + 2J₁₂

Perturbative approach

- Typical values: $\Delta_i \sim 20 500 \mu eV$; $t_{Li,Ri} \sim 1 10 \mu eV$
- H_t perturbation to H_n
- Effective exchange coupling caused by H_t between states $|(1,2,1), S_{LR}, S_{11}\rangle$, $|(1,2,1), T_{LR}^{(0)}, S_{11}\rangle$
- $1^{st}, 3^{rd}$ order vanish. 2^{nd} identical for both states

• 4th order shift
$$J = \delta E_T^{(4)} - \delta E_S^{(4)} = -2\left(\frac{t_{R2}^* t_{R1} t_{L1}^* t_{L2}}{\Delta_R \Delta_M \Delta_L} + c.c.\right)$$

RKKY-like interaction

Analysis of the coupling

- J ~ (ε₂ − ε_L)⁻¹; J ~ (ε₂ − ε_R)⁻¹ those are voltage controlled detunings, highly tunable.
- No extra energy needed for double occupied virtual state as in cotunneling scenario²
- Efficient switch off: tuning impurities away from ioniz. point (by gate voltages)
- Nontrivial dependence on tunneling phases, interference possible
- Might result in highly spatial dependent coupling, requiring atomic scale control to implement the coupling.
- Interfacial disorder mixes valley eigenstates-supression of interference.

²Vandersypen et al., Nat. Nanotech. 8, 432 (2013)

Charge noise and exchange gate fidelity

- Fluctuating electric field→Fluctuating J
- Effects of classical charge noise on the detuning parameters (white noise model with Gaussian distr.)
- Fidelity-proportional to overlap betw. the states produced by ideal and actual exchange gate.
- Error correcting protocols need fidelities at least 0.98
- Results for P donors in Si

Charge noise and exchange gate fidelity II

- Typical values J = 0.2 neV corresp. to gate time $\tau_G \approx 5 \mu s$ with fidelity F = 0.998
- Smaller J does not fundamentally limit the fidelity!
- Some studies suggest³ increased robustness of this setup due to the screening of Coulomb interaction by the paired electrons already present in the dot.

³C.M.Marcus et al., PRL 112, 026801 (2014)

Effects of inhomogeneous g factors

- Difference in the g factor betw. the dot and and impurities couples subsp. with different total spin
- Add B in the z direction as $H_{Z} = \frac{\Omega_{z}}{2} \sum_{i=1,2} (n_{i,\uparrow} - n_{i,\downarrow}); \Omega_{z} \equiv \Delta g_{z} \mu_{B} B$
- Go to basis where $H_n + H_Z$ is diagonal and take H_t as a perturbation
- 1^{st} order in Ω_Z and 2^{nd} in tunneling gives correction to the exchange effective Hamiltonian

•
$$H_g = f_g \left(\left| T_{LR}^{(0)}, S_{11} \right\rangle \langle S_{LR}, S_{11} \right| + \left| S_{LR}, S_{11} \right\rangle \left\langle T_{LR}^{(0)}, S_{11} \right| \right)$$

•
$$f_g = \frac{\Omega_z}{2} \left(\frac{|t_{L2}|^2}{\Delta_L^2} - \frac{|t_{R2}|^2}{\Delta_R^2} \right)$$
, possible to tune to zero

- QD with two electrons tuned to the two level regime can be used to mediate a coupling between the spin qubits, yelding and RRKY like exchange interaction with good tunability.
- Charge noise does not substantially lower the fidelity of two qubit gates. Error corrections is still possible.
- Inhomogenious g factors give zero-tunable contribution.