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A topological insulator, as originally proposed for electrons governed by quantum me-
chanics, is characterized by a dichotomy between the interior and the edge of a finite
system: The bulk has an energy gap, and the edges sustain excitations traversing this
gap. However, it has remained an open question whether the same physics can be
observed for systems obeying Newtons equations of motion. We conducted experi-
ments to characterize the collective behavior of mechanical oscillators exhibiting the
phenomenology of the quantum spin Hall effect. The phononic edge modes are shown
to be helical, and we demonstrate their topological protection via the stability of the
edge states against imperfections. Our results may enable the design of topological
acoustic metamaterials that can capitalize on the stability of the surface phonons as
reliable wave guides.
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The main idea

A QM lattice problem

i~ψ̇αi = Hαβij ψβj

α-spin, i-lattice site, Hαβij QSHE Hamiltonian

Classical harmonic oscillators
ẍi = −Dijxj

xi coordinates of N pendulums, Dij is the real, symmetric, positive definite matrix.

Existence and properties of edge modes are features of H or D → independent of
the interpretation of ψαi versus xi or the nature of the dynamics (i∂t vs. ∂2t)

Authors map a QM QSHE system to a mechanical system of oscillators and show
experimentally the existence of edge modes and their topological properties.
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ẍi = −Dijxj

xi coordinates of N pendulums, Dij is the real, symmetric, positive definite matrix.

Existence and properties of edge modes are features of H or D → independent of
the interpretation of ψαi versus xi or the nature of the dynamics (i∂t vs. ∂2t)

Authors map a QM QSHE system to a mechanical system of oscillators and show
experimentally the existence of edge modes and their topological properties.

2



The main idea

A QM lattice problem

i~ψ̇αi = Hαβij ψβj

α-spin, i-lattice site, Hαβij QSHE Hamiltonian

Classical harmonic oscillators
ẍi = −Dijxj

xi coordinates of N pendulums, Dij is the real, symmetric, positive definite matrix.

Existence and properties of edge modes are features of H or D → independent of
the interpretation of ψαi versus xi or the nature of the dynamics (i∂t vs. ∂2t)

Authors map a QM QSHE system to a mechanical system of oscillators and show
experimentally the existence of edge modes and their topological properties.

2



The main idea

A QM lattice problem

i~ψ̇αi = Hαβij ψβj

α-spin, i-lattice site, Hαβij QSHE Hamiltonian

Classical harmonic oscillators
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QM model

Starting with two independent copies of Hofstadter model (fermions hopping on a
2D square lattice in a B-field with Φ = ΦS/S = 2π/3 flux per plaquette)

H =
∑
α=±
Hα,Φ =

(
HΦ 0
0 H∗Φ

)
.

where

Hα,Φ = f0
∑
r,s

|r , s, α〉〈r , s ± 1, α|+ |r , s, α〉〈r ± 1, s, α|e±iαΦS
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QM model

Hα,Φ = f0
∑
r,s

|r , s, α〉〈r , s ± 1, α|+ |r , s, α〉〈r ± 1, s, α|e±iαΦS

The model yields three doubly degenerate bands separated by non-zero gaps with
one helical edge state per pseudo-spin.
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Identification with a classical system

H is complex → change of basis (combining local Kramer’s pairs):(
xr,s
yr,s

)
=
√

2

(
1 −i
1 i

)−1

︸ ︷︷ ︸
u−1→U=u⊗1textlattice

(
ψ+
r,s

ψ−r,s

)
.

Hence

U†HU =

(
ReHΦ ImHΦ

ImHΦ ReHΦ

)
≡ D

Correspondence: QM pseudospin α ↔ circular polarization of the pendulum
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Experimental realization

View from the bottom

sites: Lr × Ls = 9× 15, 2 pendulums per site (x and y mode)
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Experimental realization

x-x, y-y, x-y coupling is implemented according to D matrix.

3.mov
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Analyzing the system

Harmonically excite one site with a well-defined polarization.

1.mov

Tracking the positions of all pendulums they obtain [xr,s(t), yr,s(t)] → amplitude
Ar,s and the polarization (the lag between x and y pendulums).
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Edge states

Total response χ =
∑

r,s Ar,s/N (overall band width 1.7 Hz - 2.9 Hz)

Relative response χe/(χb + χe) where χe =
∑

edge Ar,s/Nedge and

χb =
∑

bulk Ar,s/Nbulk

In the two frequency regions (white) the response is dominated by edge modes.

9



Edge states

Total response χ =
∑

r,s Ar,s/N (overall band width 1.7 Hz - 2.9 Hz)

Relative response χe/(χb + χe) where χe =
∑

edge Ar,s/Nedge and

χb =
∑

bulk Ar,s/Nbulk

In the two frequency regions (white) the response is dominated by edge modes.

9



Edge states

Structure of the 2 highlighted modes from Fig.F
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Are the edge states helical?

In analogy to the QSHE the edge states are expected to be helical.

The wave vector along the edge is extracted from the steady state

k = φr,s+1 − φr,s

where φr,s is the angle of the vector [xr,s(t0), yr,s(t0)] w.r.t. the positive
x-direction.
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Are the edge states helical?

Scanning the edge state frequencies and extracting the wave vectors and
polarization → dispersion ω(k)

For each polarization there is an unidirectional mode per gap as expected.
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Symmetry protected edge states, polarizing beam splitter

Helicity of the edge dispersion ⇒ the edge states act as a polarizing beam splitter.

The QSHE is protected by the QM time-reversal (TR) symmetry.

Corresponding symmetry in this classical system is

{t → −t} ◦ {(xr,s , yr,s)→ (yr,s ,−xr,s)}

and can be broken by disorder on the local couplings.

Analyzing the efficiency of the system as a beam splitter ⇒ on the length scale of
the system the symmetry breaking disorder is irrelevant. (i.e. the symmetry is
preserved)
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Are the edge states robust?

Exact shape of the boundary has no influence on the stability of the edge states:
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Are the edge states robust? Domain wall

The edge states are not just a result of the finite-size geometry.

A domain wall is created inverting the effective flux on six rows of the system:
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Conclusions

Measured edge spectrum, the efficiency of the edge states as a beam splitter and
their immunity to surface roughness ⇒ QSHE phenomenology can be
implemented in an imperfect mechanical system.

Dissipation of the mechanical energy → quality factor Q. The chirality of edge
states leads to a decay length ξ ∼ Q (bidirectional wave guide ξ ∼

√
Q (random

walk)).

Although the experiment was performed with coupled pendulums, the mapping
H → D is more general and can be used to design acoustic metamaterials.
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Efficiency of the beam splitter

Analyzing the efficiency of the system as a beam splitter they conclude that on
the length scale of the system the symmetry breaking disorder is irrelevant. (i.e.
the symmetry is preserved)
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