I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

DOI:10.1038/NPHYS3366

The physics of low-energy quantum systems is usually studied without explicit consideration of the background spacetime. Phenomena inherent to quantum theory in curved spacetime, such as Hawking radiation, are typically assumed to be relevant only for extreme physical conditions: at high energies and in strong gravitational fields. Here we consider low-energy quantum mechanics in the presence of gravitational time dilation and show that the latter leads to the decoherence of quantum superpositions. Time dilation induces a universal coupling between the internal degrees of freedom and the centre of mass of a composite particle. The resulting correlations lead to decoherence in the particle position, even without any external environment. We also show that the weak time dilation on Earth is already sufficient to affect micrometre-scale objects. Gravity can therefore account for the emergence of classicality and this effect could in principle be tested in future matter- wave experiments.

July 14, 2015

Layout

1 Time dilation

General vs Special relativity-time dilation What is the Hamiltonian ? Mass energy equivalence

2 Model calculations

Decoherence rate Including special relativistic time dilation

3 Can we measure the effect on Earth ? Proposed experiments Conclusion

Time dilation	Can we measure the effect on Earth ?
• 00 000	00 00
General vs Special relativity-time dilation	

Figure : Gravitational time dilation – High clocks run fast

Universal decoherence due to gravitational time dilation

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

伺 と く ヨ と く ヨ と

Time dilation	Can we measure the effect on Earth ?
• 00 000	00 00
General vs Special relativity-time dilation	

Figure : Gravitational time dilation – High clocks run fast

• Gravitational time dilation causes clocks to run slower near a massive object

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

Time dilation	Can we measure the effect on Earth ?
• 00 000	00 00
General vs Special relativity-time dilation	

Figure : Gravitational time dilation – High clocks run fast

- Gravitational time dilation causes clocks to run slower near a massive object
- We show that even the weak time dilation on Earth is already sufficient to decohere micro-scale quantum systems

Time dilation	Model calculations	Can we measure the effect on Earth ?
000		
000		00
General vs Special relativity-time dilation		

clocks run slower as one approaches the speed of light

Figure : Special relativistic time dilation

Universal decoherence due to gravitational time dilation

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

- ∢ ⊒ →

Time dilation	Can we measure the effect on Earth ?
000 000	00
General vs Special relativity-time dilation	

clocks run slower as one approaches the speed of light

Figure : Special relativistic time dilation

• Special and general relativistic effects can combine (as noticed by astronauts)

Universal decoherence due to gravitational time dilation

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

Time dilation	Can we measure the effect on Earth ?
00 000	00 00
General vs Special relativity-time dilation	

Figure : Gravitational time dilation causes decoherence of composite quantum systems. a, Illustration of a TPPF20 (tetrapentafluorophenyl porphyrin) molecule that has recently been used for matter-wave interference. Here we illustrate a vertical superposition of size Δx in Earth's gravitational potential $\Phi(x) = gx$. b, The frequencies ω_i of internal oscillations are modified in the gravitational field – that is, $\omega_i \rightarrow \omega_i(x) = \omega_i(1 + gx/c^2)$ – which correlates the internal states and the centre-of-mass position of the molecule.

Universal decoherence due to gravitational time dilation

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

Time dilation	Model calculations	Can we measure the effect on Earth ?
000		00
What is the Hamiltonian ? Mass energy eq	uivalence	

• Consider standard quantum mechanics in the presence of time dilation

Time dilation		Can we measure the effect on Earth ?
000		00
What is the Hamiltonian ? Mass energy equivalence		

- Consider standard quantum mechanics in the presence of time dilation
- Consider slowly moving particles and weak gravitational fields (to lowest order in c^{-2} , where c is the speed of light)

Time dilation		Can we measure the effect on Earth ?
•00		00
What is the Hamiltonian ? Mass energy equivalence		

- Consider standard quantum mechanics in the presence of time dilation
- Consider slowly moving particles and weak gravitational fields (to lowest order in c^{-2} , where c is the speed of light)
- The results can also be obtained directly from the mass-energy equivalence

Time dilation		Can we measure the effect on Earth ?
•00		00
What is the Hamiltonian ? Mass energy equivalence		

- Consider standard quantum mechanics in the presence of time dilation
- Consider slowly moving particles and weak gravitational fields (to lowest order in c^{-2} , where c is the speed of light)
- The results can also be obtained directly from the mass-energy equivalence
- Any internal energy contributes to the total weight of a system and thus also couples to gravity

Time dilation		Can we measure the effect on Earth ?
000		00
		00
What is the Hamiltonian ? Mass energy equivalence		

- Consider standard quantum mechanics in the presence of time dilation
- Consider slowly moving particles and weak gravitational fields (to lowest order in c^{-2} , where c is the speed of light)
- The results can also be obtained directly from the mass-energy equivalence
- Any internal energy contributes to the total weight of a system and thus also couples to gravity
- Given any particle of mass m and an arbitrary Hamiltonian H_0 that generates the time evolution of its internal degrees of freedom, gravity couples to the total rest mass $m_{\rm tot} = m + H_0/c^2$

伺 ト イ ヨ ト イ ヨ ト

Time dilation		Can we measure the effect on Earth ?
000		00
		00
What is the Hamiltonian ? Mass energy equivalence		

- Consider standard quantum mechanics in the presence of time dilation
- Consider slowly moving particles and weak gravitational fields (to lowest order in c^{-2} , where c is the speed of light)
- The results can also be obtained directly from the mass-energy equivalence
- Any internal energy contributes to the total weight of a system and thus also couples to gravity
- Given any particle of mass m and an arbitrary Hamiltonian H_0 that generates the time evolution of its internal degrees of freedom, gravity couples to the total rest mass $m_{\rm tot} = m + H_0/c^2$
- Gravity also couples to internal energy

.

Time dilation		Can we measure the effect on Earth ?
000		00
What is the Hamiltonian ? Mass energy eq	uivalence	

•
$$m_{\rm tot} = m + H_0/c^2$$

▲口 → ▲圖 → ▲国 → ▲国 → I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

æ

Time dilation	Model calculations	Can we measure the effect on Earth ?
000		00
What is the Hamiltonian ? Mass energy ed	quivalence	

•
$$m_{\rm tot} = m + H_0/c^2$$

• $m_{\rm tot}\Phi(x) = m\Phi(x) + H_{\rm int}$, where $H_{\rm int} = \Phi(x)H_0/c^2$

Universal decoherence due to gravitational time dilation

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

回 とくほとくほど

Time dilation		Can we measure the effect on Earth ?
000		00
What is the Hamiltonian ? Mass energy equivalence		

- $m_{\rm tot} = m + H_0/c^2$
- $m_{\text{tot}}\Phi(x) = m\Phi(x) + H_{\text{int}}$, where $H_{\text{int}} = \Phi(x)H_0/c^2$
- We can also include special relativistic time dilation using $H_{\rm int} = \Phi(x)H_0/c^2 p^2H_0/(2m^2c^2)$

• = • • = •

Time dilation		Can we measure the effect on Earth ?
000		
What is the Hamiltonian ? Mass energy equivalence		

- $m_{\rm tot} = m + H_0/c^2$
- $m_{\rm tot}\Phi(x) = m\Phi(x) + H_{\rm int}$, where $H_{\rm int} = \Phi(x)H_0/c^2$
- We can also include special relativistic time dilation using $H_{\rm int} = \Phi(x)H_0/c^2 p^2H_0/(2m^2c^2)$
- If the particle is a simple harmonic oscillator with frequency $\boldsymbol{\omega}$

A B > A B >

Time dilation		Can we measure the effect on Earth ?
000		00
What is the Hamiltonian ? Mass energy equivalence		

- $m_{\rm tot} = m + H_0/c^2$
- $m_{\mathrm{tot}}\Phi(x) = m\Phi(x) + H_{\mathrm{int}}$, where $H_{\mathrm{int}} = \Phi(x)H_0/c^2$
- We can also include special relativistic time dilation using $H_{\rm int} = \Phi(x)H_0/c^2 p^2H_0/(2m^2c^2)$
- If the particle is a simple harmonic oscillator with frequency $\boldsymbol{\omega}$
- The interaction with gravity effectively changes the frequency according to $\omega\to\omega(1+\Phi(x)/c^2)$

伺 ト イヨト イヨト

Time dilation		Can we measure the effect on Earth ?
000		
What is the Hamiltonian ? Mass energy equivalence		

- $m_{\rm tot} = m + H_0/c^2$
- $m_{\rm tot}\Phi(x) = m\Phi(x) + H_{\rm int}$, where $H_{\rm int} = \Phi(x)H_0/c^2$
- We can also include special relativistic time dilation using $H_{\rm int} = \Phi(x)H_0/c^2 p^2H_0/(2m^2c^2)$
- If the particle is a simple harmonic oscillator with frequency $\boldsymbol{\omega}$
- The interaction with gravity effectively changes the frequency according to $\omega \to \omega(1 + \Phi(x)/c^2)$
- This is the well-tested gravitational redshift to lowest order in C^{-2} (Hafele, J. C. and Keating, R. E. Around-the-world atomic clocks: Predicted relativistic time gains. Science 177, 166168 (1972), Chou, C. W., Hume, D. B., Rosenband, T. and Wineland, D. J. Optical clocks and relativity. Science 329, 16301633 (2010))

- * 同 * * ヨ * * ヨ * - ヨ

Time dilation	Model calculations	Can we measure the effect on Earth ?
000		00
What is the Hamiltonian ? Mass energy e	quivalence	

• If the energy is treated as a classical variable the time dilation induced interaction H_{int} yields only this frequency shift

Time dilation		Can we measure the effect on Earth ?
000		00
000		00
What is the Hamiltonian ? Mass energy equivalence		

- If the energy is treated as a classical variable the time dilation induced interaction H_{int} yields only this frequency shift
- In quantum mechanics time dilation causes an additional, purely quantum mechanical effect: entanglement between the internal degrees of freedom and the centre of mass position of the particle resulting in decoherence

Time dilation		Can we measure the effect on Earth ?
000		
What is the Hamiltonian ? Mass energy equivalence		

- If the energy is treated as a classical variable the time dilation induced interaction H_{int} yields only this frequency shift
- In quantum mechanics time dilation causes an additional, purely quantum mechanical effect: entanglement between the internal degrees of freedom and the centre of mass position of the particle resulting in decoherence
- Even though the time dilation on earth is very weak, it leads to a significant effect for composite quantum systems

1 Time dilation

General vs Special relativity-time dilation What is the Hamiltonian ? Mass energy equivalence

2 Model calculations

Decoherence rate Including special relativistic time dilation

3 Can we measure the effect on Earth ? Proposed experiments Conclusion

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	• 0000	00
000	•	00
Decoherence rate		

• For a homogeneous gravitational field in the x-direction we can approximate $\Phi(x) \approx gx$, where $g = 9.81 \text{m/s}^2$ is the gravitational acceleration on earth

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	• 0000	00
000	•	00
Decoherence rate		

- For a homogeneous gravitational field in the x-direction we can approximate $\Phi(x) \approx gx$, where $g = 9.81 \text{m/s}^2$ is the gravitational acceleration on earth
- Consider a system with N internal harmonic modes

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	• 0000	00
000	•	00
Decoherence rate		

- For a homogeneous gravitational field in the x-direction we can approximate $\Phi(x) \approx gx$, where $g = 9.81 \text{m/s}^2$ is the gravitational acceleration on earth
- Consider a system with N internal harmonic modes

•
$$H = H_{cm} + mgx + H_0 + H_{int}$$

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	•OOOO	00
000	·	00
Decoherence rate		

- For a homogeneous gravitational field in the x-direction we can approximate $\Phi(x) \approx gx$, where $g = 9.81 \text{m/s}^2$ is the gravitational acceleration on earth
- Consider a system with N internal harmonic modes

•
$$H = H_{cm} + mgx + H_0 + H_{int}$$

•
$$H_0 = \sum_{i=1}^N \hbar \omega_i n_i$$

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	•OOOO	00
000	·	00
Decoherence rate		

- For a homogeneous gravitational field in the x-direction we can approximate $\Phi(x) \approx gx$, where $g = 9.81 \text{m/s}^2$ is the gravitational acceleration on earth
- Consider a system with N internal harmonic modes

•
$$H = H_{cm} + mgx + H_0 + H_{int}$$

- $H_0 = \sum_{i=1}^N \hbar \omega_i n_i$
- $H_{\text{int}} = \Phi(x)H_0/c^2 = \hbar g x (\sum_{i=1}^N \hbar \omega_i n_i)/c^2$

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	•OOOO	00
000	·	00
Decoherence rate		

- For a homogeneous gravitational field in the x-direction we can approximate $\Phi(x) \approx gx$, where $g = 9.81 \text{m/s}^2$ is the gravitational acceleration on earth
- Consider a system with N internal harmonic modes

•
$$H = H_{cm} + mgx + H_0 + H_{int}$$

- $H_0 = \sum_{i=1}^N \hbar \omega_i n_i$
- $H_{\text{int}} = \Phi(x)H_0/c^2 = \hbar g x (\sum_{i=1}^N \hbar \omega_i n_i)/c^2$
- First consider the case when the gravitational contribution to time dilation is dominant such that the velocity contributions can be neglected

ヨト イヨト イヨト

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	○●○○	00
000	○	00
Decoherence rate		

 Consider a particle at rest in superposition of two vertically distinct positions x₁ and x₂ and a height difference Δx = x₂ - x₁

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	0000	00
000	0	00
Decoherence rate		

- Consider a particle at rest in superposition of two vertically distinct positions x_1 and x_2 and a height difference $\Delta x = x_2 x_1$
- State of the center of mass is: $|\psi_{cm}(0)\rangle = \frac{1}{\sqrt{2}}(|x_1\rangle + |x_2\rangle)$

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	0000	00
000	0	00
Decoherence rate		

- Consider a particle at rest in superposition of two vertically distinct positions x_1 and x_2 and a height difference $\Delta x = x_2 x_1$
- State of the center of mass is: $|\psi_{cm}(0)\rangle = \frac{1}{\sqrt{2}}(|x_1\rangle + |x_2\rangle)$
- Assuming that the internal degrees of freedom are in thermal equilibrium at local temperature T, each i^{th} mode can be described by the thermal density matrix using coherent states $\rho_i = \frac{1}{\pi \bar{n}_i} \int d^2 \alpha_i e^{-|\alpha_i|^2/\bar{n}_i} |\alpha_i\rangle \langle \alpha_i|$

Time dilation 000 000	Model calculations 0000 0	Can we measure the effect on Earth ? $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
Decoherence rate		

- Consider a particle at rest in superposition of two vertically distinct positions x_1 and x_2 and a height difference $\Delta x = x_2 x_1$
- State of the center of mass is: $|\psi_{cm}(0)\rangle = \frac{1}{\sqrt{2}}(|x_1\rangle + |x_2\rangle)$
- Assuming that the internal degrees of freedom are in thermal equilibrium at local temperature *T*, each *i*th mode can be described by the thermal density matrix using coherent states
 ρ_i = 1/π n̄_i ∫ d²α_ie^{-|α_i|²/n̄_i} |α_i ζ ⟨α_i|
 • n̄_i = 1/e^{ħω_i/(k_BT)-1}

	Model calculations	Can we measure the effect on Earth ?
000	o●oo ○	00
Decoherence rate		

- Consider a particle at rest in superposition of two vertically distinct positions x_1 and x_2 and a height difference $\Delta x = x_2 x_1$
- State of the center of mass is: $|\psi_{cm}(0)\rangle = \frac{1}{\sqrt{2}}(|x_1\rangle + |x_2\rangle)$
- Assuming that the internal degrees of freedom are in thermal equilibrium at local temperature T, each i^{th} mode can be described by the thermal density matrix using coherent states $\rho_i = \frac{1}{\pi \bar{n}_i} \int d^2 \alpha_i e^{-|\alpha_i|^2/\bar{n}_i} |\alpha_i\rangle \langle \alpha_i|$
- $\bar{n}_i = \frac{1}{e^{\hbar\omega_i/(k_B T)} 1}$
- Thus the total initial state is $\rho(0) = |\psi_{cm}(0)\rangle \langle \psi_{cm}(0)| \otimes \prod_{i=1}^{N} \rho_i$

Time dilation 000 000	Model calculations OOOO O	Can we measure the effect on Earth ?
Decoherence rate		

 Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i

- Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i
- $\dot{\rho} = -\frac{i}{\hbar}[H,\rho]$

- 4 同 ト - 4 目 ト - 4 目 ト

- Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i
- $\dot{\rho} = -\frac{i}{\hbar}[H,\rho]$
- Since we are interested in the decoherence time, we investigate off diagonal elements $\rho_{12} = \langle x_1 | \rho | x_2 \rangle = \rho_{21}^*$

・ 同 ト ・ ヨ ト ・ ヨ ト

Time dilation 000 000	Model calculations ○○●○ ○	Can we measure the effect on Earth ? $\stackrel{OO}{_{OO}}$
Decoherence rate		

- Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i
- $\dot{\rho} = -\frac{i}{\hbar}[H,\rho]$
- Since we are interested in the decoherence time, we investigate off diagonal elements $\rho_{12} = \langle x_1 | \rho | x_2 \rangle = \rho_{21}^*$

•
$$\rho_{12}(t) = \frac{e^{img\Delta xt/\hbar}}{2\pi\bar{n}_i} \prod_{i=1}^N \int d^2 \alpha_i e^{-|\alpha_i|^2/\bar{n}_i} |\alpha_i e^{i\omega_i(x_1)t} \rangle \langle \alpha_i e^{i\omega_i(x_2)t} |$$

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	○○●○	00
000	○	00
Decoherence rate		

- Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i
- $\dot{\rho} = -\frac{i}{\hbar}[H,\rho]$
- Since we are interested in the decoherence time, we investigate off diagonal elements $\rho_{12} = \langle x_1 | \rho | x_2 \rangle = \rho_{21}^*$
- $\rho_{12}(t) = \frac{e^{img\Delta xt/\hbar}}{2\pi\bar{n}_i} \prod_{i=1}^N \int d^2 \alpha_i e^{-|\alpha_i|^2/\bar{n}_i} |\alpha_i e^{i\omega_i(x_1)t} \rangle \langle \alpha_i e^{i\omega_i(x_2)t} |$

•
$$\omega_i(x) = \omega_i(1 + gx/c^2)$$

Time dilation 000 000	Model calculations OOOO O	Can we measure the effect on Earth ?
Decoherence rate		

- Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i
- $\dot{\rho} = -\frac{i}{\hbar}[H,\rho]$
- Since we are interested in the decoherence time, we investigate off diagonal elements $\rho_{12} = \langle x_1 | \rho | x_2 \rangle = \rho_{21}^*$

•
$$\rho_{12}(t) = \frac{e^{img\Delta xt/\hbar}}{2\pi\bar{n}_i} \prod_{i=1}^N \int d^2 \alpha_i e^{-|\alpha_i|^2/\bar{n}_i} |\alpha_i e^{i\omega_i(x_1)t} \rangle \langle \alpha_i e^{i\omega_i(x_2)t} |$$

•
$$\omega_i(x) = \omega_i(1 + gx/c^2)$$

• The frequencies of the internal oscillators depend on the position in the gravitational field, in accordance with gravitational time dilation

通 と く ヨ と く ヨ と

Time dilation 000 000	Model calculations ○○○● ○	Can we measure the effect on Earth ?
Decoherence rate		

• To see decoherence of the centre of mass, we trace out the internal degrees of freedom

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

Time dilation 000 000	Model calculations ○○○● ○	Can we measure the effect on Earth ?
Decoherence rate		

• To see decoherence of the centre of mass, we trace out the internal degrees of freedom

•
$$\rho_{\rm cm}^{(12)}(t) = \prod_{i=1}^{N} {\rm Tr}_i[\rho_{12}(t)] = \frac{1}{2} \prod_{i=1}^{N} \frac{1}{1 + \bar{n}_i (1 - e^{-i\omega_i tg\Delta x/c^2})}$$

Time dilation 000 000	Model calculations ○○○● ○	Can we measure the effect on Earth ? $\stackrel{OO}{_{OO}}$
Decoherence rate		

• To see decoherence of the centre of mass, we trace out the internal degrees of freedom

•
$$\rho_{\rm cm}^{(12)}(t) = \prod_{i=1}^{N} {\rm Tr}_i[\rho_{12}(t)] = \frac{1}{2} \prod_{i=1}^{N} \frac{1}{1 + \bar{n}_i(1 - e^{-i\omega_i tg\Delta x/c^2})}$$

• If
$$\omega_i tg \Delta x/c^2 \ll 1$$
, $\rho_{cm}^{(12)}(t) \approx \frac{1}{2} \prod_{i=1}^{N} \frac{1}{1 + \bar{n}_i(i\omega_i tg \Delta x/c^2)}$

Time dilation 000 000	Model calculations ○○○● ○	Can we measure the effect on Earth ?
Decoherence rate		

- To see decoherence of the centre of mass, we trace out the internal degrees of freedom
- $\rho_{\rm cm}^{(12)}(t) = \prod_{i=1}^{N} {\rm Tr}_i[\rho_{12}(t)] = \frac{1}{2} \prod_{i=1}^{N} \frac{1}{1 + \bar{n}_i(1 e^{-i\omega_i tg\Delta x/c^2})}$
- If $\omega_i tg\Delta x/c^2 \ll 1$, $\rho_{cm}^{(12)}(t) \approx \frac{1}{2}\prod_{i=1}^{N} \frac{1}{1+\bar{n}_i(i\omega_i tg\Delta x/c^2)}$
- In the high temperature limit $\bar{n}_i \approx k_B T/(\hbar \omega_i)$

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	○○○●	00
000	○	00
Decoherence rate		

- To see decoherence of the centre of mass, we trace out the internal degrees of freedom
- $\rho_{\rm cm}^{(12)}(t) = \prod_{i=1}^{N} {\rm Tr}_i[\rho_{12}(t)] = \frac{1}{2} \prod_{i=1}^{N} \frac{1}{1 + \bar{n}_i(1 e^{-i\omega_i tg\Delta x/c^2})}$
- If $\omega_i tg\Delta x/c^2 \ll 1$, $\rho_{\rm cm}^{(12)}(t) \approx \frac{1}{2}\prod_{i=1}^N \frac{1}{1+\bar{n}_i(i\omega_i tg\Delta x/c^2)}$
- In the high temperature limit $\bar{n}_i \approx k_B T/(\hbar \omega_i)$
- $|\rho_{cm}^{(12)}(t)| = \frac{1}{2}(1 + (k_B Tg\Delta xt/(\hbar c^2))^2)^{-N/2}$

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	○○○●	00
000	○	00
Decoherence rate		

- To see decoherence of the centre of mass, we trace out the internal degrees of freedom
- $\rho_{\rm cm}^{(12)}(t) = \prod_{i=1}^{N} {\rm Tr}_i[\rho_{12}(t)] = \frac{1}{2} \prod_{i=1}^{N} \frac{1}{1 + \bar{n}_i(1 e^{-i\omega_i tg\Delta x/c^2})}$
- If $\omega_i tg\Delta x/c^2 \ll 1$, $\rho_{\rm cm}^{(12)}(t) \approx \frac{1}{2}\prod_{i=1}^N \frac{1}{1+\bar{n}_i(i\omega_i tg\Delta x/c^2)}$
- In the high temperature limit $\bar{n}_i \approx k_B T/(\hbar \omega_i)$
- $|\rho_{cm}^{(12)}(t)| = \frac{1}{2}(1 + (k_B Tg\Delta xt/(\hbar c^2))^2)^{-N/2}$
- For $t \ll N au_{
 m dec}$, $|
 ho_{
 m cm}^{12}|$ decays exponentially with $au_{
 m dec}$

Time dilation	Model calculations	Can we measure the effect on Earth ?
000	○○○●	oo
000	○	oo
Decoherence rate		

- To see decoherence of the centre of mass, we trace out the internal degrees of freedom
- $\rho_{\rm cm}^{(12)}(t) = \prod_{i=1}^{N} {\rm Tr}_i[\rho_{12}(t)] = \frac{1}{2} \prod_{i=1}^{N} \frac{1}{1 + \bar{n}_i(1 e^{-i\omega_i tg\Delta x/c^2})}$
- If $\omega_i tg \Delta x/c^2 \ll 1$, $\rho_{cm}^{(12)}(t) \approx \frac{1}{2} \prod_{i=1}^{N} \frac{1}{1 + \bar{n}_i(i\omega_i tg \Delta x/c^2)}$
- In the high temperature limit $\bar{n}_i \approx k_B T/(\hbar \omega_i)$
- $|\rho_{cm}^{(12)}(t)| = \frac{1}{2}(1 + (k_B Tg\Delta xt/(\hbar c^2))^2)^{-N/2}$
- For $t \ll N au_{
 m dec}, ~|
 ho_{
 m cm}^{12}|$ decays exponentially with $au_{
 m dec}$

•
$$\tau_{\rm dec} = \sqrt{\frac{2}{N}} \frac{\hbar c^2}{k_B T g \Delta x}$$

Time dilation	Model calculations	Can we measure the effect on Earth ?
	•	
Including special relativistic time dilation		

• Include the special relativistic time dilation using $H_{\rm int} = \Phi(x)H_0/c^2 - p^2H_0/(2m^2c^2)$

白 とくほとくほど

Time dilation	Model calculations	Can we measure the effect on Earth ?
	•	
Including special relativistic time dilation		

• Include the special relativistic time dilation using $H_{\rm int} = \Phi(x)H_0/c^2 - p^2H_0/(2m^2c^2)$

•
$$\dot{\rho} = -\frac{i}{\hbar}[H,\rho]$$

白 とくほとくほど

	Model calculations	Can we measure the effect on Earth ?
Including special relativistic time dilation		

- Include the special relativistic time dilation using $H_{\rm int} = \Phi(x)H_0/c^2 p^2H_0/(2m^2c^2)$
- $\dot{\rho} = -\frac{i}{\hbar}[H,\rho]$
- The evolution in the presence of time dilation is inherently non-Markovian

直 ト イヨ ト イヨ ト

	Model calculations	Can we measure the effect on Earth ?
	•	
Including special relativistic time dilation		

- Include the special relativistic time dilation using $H_{\rm int} = \Phi(x)H_0/c^2 p^2H_0/(2m^2c^2)$
- $\dot{\rho} = -\frac{i}{\hbar}[H,\rho]$
- The evolution in the presence of time dilation is inherently non-Markovian

•
$$\tau_{\rm dec} = \sqrt{2} \frac{\hbar c^2}{N k_B T g \Delta x}$$

ゆ く き く き く

Layout

1 Time dilation

General vs Special relativity-time dilation What is the Hamiltonian ? Mass energy equivalence

2 Model calculations

Decoherence rate Including special relativistic time dilation

3 Can we measure the effect on Earth ? Proposed experiments Conclusion

	Can we measure the effect on Earth ?
	•0
Proposed experiments	

•
$$\tau_{\rm dec} = \sqrt{\frac{2}{N}} \frac{\hbar c^2}{k_B T_g \Delta x}$$

・ロト ・回ト ・ヨト ・ヨト I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

æ

Time dilation	Model calculations	Can we measure the effect on Earth ?
		●○
Proposed experiments		

•
$$au_{\rm dec} = \sqrt{\frac{2}{N}} \frac{\hbar c^2}{k_B T g \Delta x}$$

•
$$N\sim 10^{23}$$
, $\Delta x=10^{-6}$ m, $T=300$ K

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

Time dilation	Model calculations	Can we measure the effect on Earth ?
		●○
Proposed experiments		

•
$$\tau_{\rm dec} = \sqrt{\frac{2}{N}} \frac{\hbar c^2}{k_B T g \Delta x}$$

•
$$N \sim 10^{23}$$
, $\Delta x = 10^{-6}$ m, $T = 300$ K

•
$$au_{
m dec} pprox 10^{-3}~
m s$$

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

	Can we measure the effect on Earth ?
	•0
Proposed experiments	

•
$$au_{\rm dec} = \sqrt{\frac{2}{N}} \frac{\hbar c^2}{k_B T g \Delta x}$$

•
$$N\sim 10^{23}$$
, $\Delta x=10^{-6}$ m, $T=300$ K

- $\tau_{\rm dec} pprox 10^{-3}~{
 m s}$
- To see decoherence caused by time dilation, other decoherence mechanisms will need to be suppressed: The scattering with surrounding molecules and with thermal radiation requires such an experiment to be performed at liquid helium temperatures and in ultrahigh vacuum

	Can we measure the effect on Earth ?
	•0
Proposed experiments	

•
$$\tau_{\rm dec} = \sqrt{\frac{2}{N}} \frac{\hbar c^2}{k_B T g \Delta x}$$

•
$$N\sim 10^{23}$$
, $\Delta x=10^{-6}$ m, $T=300$ K

- $\tau_{\rm dec} pprox 10^{-3}~{
 m s}$
- To see decoherence caused by time dilation, other decoherence mechanisms will need to be suppressed: The scattering with surrounding molecules and with thermal radiation requires such an experiment to be performed at liquid helium temperatures and in ultrahigh vacuum
- The emission and absorption of thermal radiation by the system will be a competing decoherence source ($\tau_{\rm em}$)

	Can we measure the effect on Earth ?
000	○ ○○
Proposed experiments	

Figure : Decoherence due to gravitational time dilation as compared to decoherence due to emission of thermal radiation for sapphire microspheres. In the green region time dilation is the dominant decoherence mechanism. The left axis shows various sphere radii r (corresponding to particle numbers $N = 10^7$ to $N = 10^{18}$) for a fixed superposition size Δx , whereas the right axis shows various superposition sizes for a fixed particle radius. The dashed lines correspond to the respective time dilation decoherence time scales. Sapphire was chosen for its low emission at microwave frequencies.

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

• Our results show that general relativity can account for the suppression of quantum behaviour for macroscopic objects without introducing any modifications to quantum mechanics or to general relativity

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

		Can we measure the effect on Earth ?
000	0000	00
		•0
Conclusion		

- Our results show that general relativity can account for the suppression of quantum behaviour for macroscopic objects without introducing any modifications to quantum mechanics or to general relativity
- However, we note that the simple model for the composition of the system, necessary to estimate the time dilation decoherence rate, is very crude and at low temperatures we expect the model to break down

• Although an experiment to measure decoherence due to proper time is very challenging, the rapid developments in controlling large quantum systems for quantum metrology and for testing wavefunction collapse models will inevitably come to the regime where the time dilation induced decoherence predicted here will be of importance

伺 と く ヨ と く ヨ と

- Although an experiment to measure decoherence due to proper time is very challenging, the rapid developments in controlling large quantum systems for quantum metrology and for testing wavefunction collapse models will inevitably come to the regime where the time dilation induced decoherence predicted here will be of importance
- In the long run, experiments on Earth will have to be specifically designed to avoid this gravitational effect on quantum coherence

- 4 同 ト - 4 目 ト - 4 目 ト

- Although an experiment to measure decoherence due to proper time is very challenging, the rapid developments in controlling large quantum systems for quantum metrology and for testing wavefunction collapse models will inevitably come to the regime where the time dilation induced decoherence predicted here will be of importance
- In the long run, experiments on Earth will have to be specifically designed to avoid this gravitational effect on quantum coherence
- Thank you for your attention !!!

< 同 > < 三 > < 三 >