Universal decoherence due to gravitational time dilation

I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

DOI:10.1038/NPHYS3366

The physics of low-energy quantum systems is usually studied without explicit consideration of the background spacetime. Phenomena inherent to quantum theory in curved spacetime, such as Hawking radiation, are typically assumed to be relevant only for extreme physical conditions: at high energies and in strong gravitational fields. Here we consider low-energy quantum mechanics in the presence of gravitational time dilation and show that the latter leads to the decoherence of quantum superpositions. Time dilation induces a universal coupling between the internal degrees of freedom and the centre of mass of a composite particle. The resulting correlations lead to decoherence in the particle position, even without any external environment. We also show that the weak time dilation on Earth is already sufficient to affect micrometre-scale objects. Gravity can therefore account for the emergence of classicality and this effect could in principle be tested in future matter- wave experiments.

July 14, 2015

 QQ

1 [Time dilation](#page-1-0)

[General vs Special relativity-time dilation](#page-2-0) [What is the Hamiltonian ? Mass energy equivalence](#page-8-0)

2 [Model calculations](#page-23-0)

[Decoherence rate](#page-24-0) [Including special relativistic time dilation](#page-48-0)

3 Can we measure the effect on Earth? [Proposed experiments](#page-53-0) [Conclusion](#page-59-0)

化重变 化重

つくへ

Figure : Gravitational time dilation – High clocks run fast

 \sim [Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

and in

 \mathcal{A}

- 4 重 8 3 4 重 8

 $2Q$

Figure : Gravitational time dilation – High clocks run fast

• Gravitational time dilation causes clocks to run slower near a massive object

化重变 化重

 QQ

Figure : Gravitational time dilation – High clocks run fast

- Gravitational time dilation causes clocks to run slower near a massive object
- We show that even the weak time dilation on Earth is already sufficient to decohere micro-scale quantum systems

つへへ

clocks run slower as one approaches the speed of light

Figure : Special relativistic time dilation

[Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

- ∢ 何 ▶ -∢ ヨ ▶ -∢ ヨ ▶

4 0 8

 299

э

Figure : Special relativistic time dilation

• Special and general relativistic effects can combine (as noticed by astronauts)

[Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

 \equiv \sim QQ

Figure : Gravitational time dilation causes decoherence of composite quantum systems. a, Illustration of a TPPF20 (tetrapentafluorophenyl porphyrin) molecule that has recently been used for matter-wave interference. Here we illustrate a vertical superposition of size Δx in Earth's gravitational potential $\Phi(x) = gx$. b, The frequencies ω_i of internal oscillations are modified in the gravitational field – that is, $\omega_i\to\omega_i$ (x) $=\omega_i(1+gx/c^2)$ – which correlates the internal states and the centre-of-mass position of the molecule.

 \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow [Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

4 17 18

 QQ

• Consider standard quantum mechanics in the presence of time dilation

∢ 重 下

- Consider standard quantum mechanics in the presence of time dilation
- • Consider slowly moving particles and weak gravitational fields (to lowest order in c^{-2} , where c is the speed of light)

- Consider standard quantum mechanics in the presence of time dilation
- Consider slowly moving particles and weak gravitational fields (to lowest order in c^{-2} , where c is the speed of light)
- • The results can also be obtained directly from the mass–energy equivalence

- Consider standard quantum mechanics in the presence of time dilation
- Consider slowly moving particles and weak gravitational fields (to lowest order in c^{-2} , where c is the speed of light)
- The results can also be obtained directly from the mass–energy equivalence
- • Any internal energy contributes to the total weight of a system and thus also couples to gravity

- Consider standard quantum mechanics in the presence of time dilation
- Consider slowly moving particles and weak gravitational fields (to lowest order in c^{-2} , where c is the speed of light)
- The results can also be obtained directly from the mass–energy equivalence
- Any internal energy contributes to the total weight of a system and thus also couples to gravity
- Given any particle of mass m and an arbitrary Hamiltonian H_0 that generates the time evolution of its internal degrees of freedom, gravity couples to the total rest mass $m_{\text{tot}} = m + H_0/c^2$

 \overline{AB}) \overline{AB}) \overline{AB}

- Consider standard quantum mechanics in the presence of time dilation
- Consider slowly moving particles and weak gravitational fields (to lowest order in c^{-2} , where c is the speed of light)
- The results can also be obtained directly from the mass–energy equivalence
- Any internal energy contributes to the total weight of a system and thus also couples to gravity
- Given any particle of mass m and an arbitrary Hamiltonian H_0 that generates the time evolution of its internal degrees of freedom, gravity couples to the total rest mass $m_{\text{tot}} = m + H_0/c^2$
- Gravity also couples to internal energy

NOVEMBER 19

•
$$
m_{\text{tot}} = m + H_0/c^2
$$

メロメメ 御 メメ きょく きょう [Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

目

•
$$
m_{\text{tot}} = m + H_0/c^2
$$

•
$$
m_{\text{tot}}\Phi(x) = m\Phi(x) + H_{\text{int}}
$$
, where $H_{\text{int}} = \Phi(x)H_0/c^2$

メロメメ 御き メ 君 と メ 君 とう [Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

●○ 2990

- \bullet $m_{\rm tot} = m + H_0/c^2$
- $\bullet~~ m_{\text{tot}}\Phi(x)=m\Phi(x)+H_{\text{int}}$, where $H_{\text{int}}=\Phi(x)H_0/c^2$
- We can also include special relativistic time dilation using $H_{\text{int}} = \Phi(x)H_0/c^2 - p^2H_0/(2m^2c^2)$

伊 ト イヨ ト イヨ ト

- \bullet $m_{\rm tot} = m + H_0/c^2$
- $\bullet~~ m_{\text{tot}}\Phi(x)=m\Phi(x)+H_{\text{int}}$, where $H_{\text{int}}=\Phi(x)H_0/c^2$
- We can also include special relativistic time dilation using $H_{\text{int}} = \Phi(x)H_0/c^2 - p^2H_0/(2m^2c^2)$
- If the particle is a simple harmonic oscillator with frequency ω

NOVEMBER

- \bullet $m_{\rm tot} = m + H_0/c^2$
- $\bullet~~ m_{\text{tot}}\Phi(x)=m\Phi(x)+H_{\text{int}}$, where $H_{\text{int}}=\Phi(x)H_0/c^2$
- We can also include special relativistic time dilation using $H_{\text{int}} = \Phi(x)H_0/c^2 - p^2H_0/(2m^2c^2)$
- If the particle is a simple harmonic oscillator with frequency ω
- The interaction with gravity effectively changes the frequency according to $\omega \rightarrow \omega(1+\Phi(\varkappa)/c^2)$

A & Y B & Y B &

- \bullet $m_{\rm tot} = m + H_0/c^2$
- $\bullet~~ m_{\text{tot}}\Phi(x)=m\Phi(x)+H_{\text{int}}$, where $H_{\text{int}}=\Phi(x)H_0/c^2$
- We can also include special relativistic time dilation using $H_{\text{int}} = \Phi(x)H_0/c^2 - p^2H_0/(2m^2c^2)$
- If the particle is a simple harmonic oscillator with frequency ω
- The interaction with gravity effectively changes the frequency according to $\omega \rightarrow \omega(1+\Phi(\varkappa)/c^2)$
- This is the well-tested gravitational redshift to lowest order in $\rm{c^{-2}}$ (Hafele, J. C. and Keating, R. E. Around-the-world atomic clocks: Predicted relativistic time gains. Science 177, 166168 (1972), Chou, C. W., Hume, D. B., Rosenband, T. and Wineland, D. J. Optical clocks and relativity. Science 329, 16301633 (2010))

イロメ イ母メ イヨメ イヨメー ヨ

• If the energy is treated as a classical variable the time dilation induced interaction H_{int} yields only this frequency shift

∢∃⊳⊣∢

つへへ

- If the energy is treated as a classical variable the time dilation induced interaction H_{int} yields only this frequency shift
- • In quantum mechanics time dilation causes an additional, purely quantum mechanical effect: entanglement between the internal degrees of freedom and the centre of mass position of the particle resulting in decoherence

- If the energy is treated as a classical variable the time dilation induced interaction H_{int} yields only this frequency shift
- In quantum mechanics time dilation causes an additional, purely quantum mechanical effect: entanglement between the internal degrees of freedom and the centre of mass position of the particle resulting in decoherence
- Even though the time dilation on earth is very weak, it leads to a significant effect for composite quantum systems

A & Y B & Y B &

1 [Time dilation](#page-1-0)

[General vs Special relativity-time dilation](#page-2-0) [What is the Hamiltonian ? Mass energy equivalence](#page-8-0)

2 [Model calculations](#page-23-0)

[Decoherence rate](#page-24-0) [Including special relativistic time dilation](#page-48-0)

3 Can we measure the effect on Earth? [Proposed experiments](#page-53-0) [Conclusion](#page-59-0)

[Universal decoherence due to gravitational time dilation](#page-0-0) **I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.**

化重变 化重

つくへ

• For a homogeneous gravitational field in the x −direction we can approximate $\Phi(\mathsf{x}) \approx g \mathsf{x}$, where $g = 9.81 \mathsf{m/s}^2$ is the gravitational acceleration on earth

- For a homogeneous gravitational field in the x −direction we can approximate $\Phi(\mathsf{x}) \approx g \mathsf{x}$, where $g = 9.81 \mathsf{m/s}^2$ is the gravitational acceleration on earth
- • Consider a system with N internal harmonic modes

- For a homogeneous gravitational field in the x −direction we can approximate $\Phi(\mathsf{x}) \approx g \mathsf{x}$, where $g = 9.81 \mathsf{m/s}^2$ is the gravitational acceleration on earth
- Consider a system with N internal harmonic modes

•
$$
H = H_{cm} + mgx + H_0 + H_{int}
$$

- For a homogeneous gravitational field in the x −direction we can approximate $\Phi(\mathsf{x}) \approx g \mathsf{x}$, where $g = 9.81 \mathsf{m/s}^2$ is the gravitational acceleration on earth
- Consider a system with N internal harmonic modes

•
$$
H = H_{cm} + mgx + H_0 + H_{int}
$$

•
$$
H_0 = \sum_{i=1}^{N} \hbar \omega_i n_i
$$

- For a homogeneous gravitational field in the x−direction we can approximate $\Phi(\mathsf{x}) \approx g \mathsf{x}$, where $g = 9.81 \mathsf{m/s}^2$ is the gravitational acceleration on earth
- Consider a system with N internal harmonic modes

•
$$
H = H_{cm} + mgx + H_0 + H_{int}
$$

•
$$
H_0 = \sum_{i=1}^{N} \hbar \omega_i n_i
$$

• $H_{\text{int}} = \Phi(x)H_0/c^2 = \hbar g x (\sum_{i=1}^N \hbar \omega_i n_i)/c^2$

- For a homogeneous gravitational field in the x −direction we can approximate $\Phi(\mathsf{x}) \approx g \mathsf{x}$, where $g = 9.81 \mathsf{m/s}^2$ is the gravitational acceleration on earth
- Consider a system with N internal harmonic modes

•
$$
H = H_{cm} + mgx + H_0 + H_{int}
$$

- \bullet $H_0 = \sum_{i=1}^N \hbar \omega_i n_i$
- $H_{\text{int}} = \Phi(x)H_0/c^2 = \hbar g x (\sum_{i=1}^N \hbar \omega_i n_i)/c^2$
- First consider the case when the gravitational contribution to time dilation is dominant such that the velocity contributions can be neglected

NOVEMBER

• Consider a particle at rest in superposition of two vertically distinct positions x_1 and x_2 and a height difference $\Delta x = x_2 - x_1$

化重变 化重

 QQ

- Consider a particle at rest in superposition of two vertically distinct positions x_1 and x_2 and a height difference $\Delta x = x_2 - x_1$
- • State of the center of mass is: $\ket{\psi_{\mathsf{cm}}(0)} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|x_1\rangle + |x_2\rangle)$

- Consider a particle at rest in superposition of two vertically distinct positions x_1 and x_2 and a height difference $\Delta x = x_2 - x_1$
- State of the center of mass is: $\ket{\psi_{\mathsf{cm}}(0)} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|x_1\rangle + |x_2\rangle)$
- Assuming that the internal degrees of freedom are in thermal equilibrium at local temperature $\mathcal T$, each i^{th} mode can be described by the thermal density matrix using coherent states $\rho_i = \frac{1}{\pi i}$ $\frac{1}{\pi \bar{n_i}} \int d^2 \alpha_i e^{-|\alpha_i|^2/\bar{n_i}} |\alpha_i\rangle\langle\alpha_i|$

伊 ト イヨ ト イヨ ト

- Consider a particle at rest in superposition of two vertically distinct positions x_1 and x_2 and a height difference $\Delta x = x_2 - x_1$
- State of the center of mass is: $\ket{\psi_{\mathsf{cm}}(0)} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|x_1\rangle + |x_2\rangle)$
- Assuming that the internal degrees of freedom are in thermal equilibrium at local temperature $\mathcal T$, each i^{th} mode can be described by the thermal density matrix using coherent states $\rho_i = \frac{1}{\pi i}$ $\frac{1}{\pi \bar{n_i}} \int d^2 \alpha_i e^{-|\alpha_i|^2/\bar{n_i}} |\alpha_i\rangle\langle\alpha_i|$

•
$$
\bar{n}_i = \frac{1}{e^{\hbar \omega_i/(k_B T)} - 1}
$$

[Universal decoherence due to gravitational time dilation](#page-0-0) **I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.**

 $\mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d$

- Consider a particle at rest in superposition of two vertically distinct positions x_1 and x_2 and a height difference $\Delta x = x_2 - x_1$
- State of the center of mass is: $\ket{\psi_{\mathsf{cm}}(0)} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|x_1\rangle + |x_2\rangle)$
- Assuming that the internal degrees of freedom are in thermal equilibrium at local temperature $\mathcal T$, each i^{th} mode can be described by the thermal density matrix using coherent states $\rho_i = \frac{1}{\pi i}$ $\frac{1}{\pi \bar{n_i}} \int d^2 \alpha_i e^{-|\alpha_i|^2/\bar{n_i}} |\alpha_i\rangle\langle\alpha_i|$
- \bullet $\bar{\eta}_i = \frac{1}{e^{\hbar\omega_i/(k_i)}}$ $e^{\hbar\omega_i/(k_B T)}-1$
- Thus the total initial state is $\rho(0)=\vert\psi_{\mathsf{cm}}(0)\rangle\langle\psi_{\mathsf{cm}}(0)\vert\otimes\Pi_{i=1}^{N}\rho_{i}$

 $\mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d$

• Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i

 λ = λ

つへへ

- Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i
- $\rho=-\frac{i}{\hbar}[H,\rho]$

- 4 国 メ 3 国

- Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i
- $\rho=-\frac{i}{\hbar}[H,\rho]$
- • Since we are interested in the decoherence time, we investigate off diagonal elements $\rho_{12} = \langle x_1 | \rho | x_2 \rangle = \rho_{21}^*$

- Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i
- $\rho=-\frac{i}{\hbar}[H,\rho]$
- Since we are interested in the decoherence time, we investigate off diagonal elements $\rho_{12} = \langle x_1 | \rho | x_2 \rangle = \rho_{21}^*$

•
$$
\rho_{12}(t) = \frac{e^{img\Delta x t/\hbar}}{2\pi \bar{n}_i} \prod_{i=1}^{N} \int d^2\alpha_i e^{-|\alpha_i|^2/\bar{n}_i} |\alpha_i e^{i\omega_i(x_1)t} \rangle \langle \alpha_i e^{i\omega_i(x_2)t}|
$$

- Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i
- $\rho=-\frac{i}{\hbar}[H,\rho]$
- Since we are interested in the decoherence time, we investigate off diagonal elements $\rho_{12} = \langle x_1 | \rho | x_2 \rangle = \rho_{21}^*$
- $\rho_{12}(t) = \frac{e^{img\Delta x t/\hbar}}{2\pi\hbar}$ $\frac{\partial^2\alpha}{\partial z\bar{n}_i}\Pi_{i=1}^{\mathsf{N}}\int d^2\alpha_i\mathrm{e}^{-|\alpha_i|^2/\bar{n}_i}|\alpha_i\mathrm{e}^{i\omega_i({x_1})t}\rangle\langle\alpha_i\mathrm{e}^{i\omega_i({x_2})t}|$

•
$$
\omega_i(x) = \omega_i(1 + gx/c^2)
$$

同 ▶ (ヨ) (ヨ)

- Gravitational time dilation now couples the centre of mass position of the system to the internal degrees of freedom ρ_i
- $\rho=-\frac{i}{\hbar}[H,\rho]$
- Since we are interested in the decoherence time, we investigate off diagonal elements $\rho_{12} = \langle x_1 | \rho | x_2 \rangle = \rho_{21}^*$

•
$$
\rho_{12}(t) = \frac{e^{img\Delta x t/\hbar}}{2\pi \bar{n}_i} \prod_{i=1}^{N} \int d^2\alpha_i e^{-|\alpha_i|^2/\bar{n}_i} |\alpha_i e^{i\omega_i(x_1)t} \rangle \langle \alpha_i e^{i\omega_i(x_2)t}|
$$

•
$$
\omega_i(x) = \omega_i(1 + gx/c^2)
$$

• The frequencies of the internal oscillators depend on the position in the gravitational field, in accordance with gravitational time dilation

A & Y B & Y B &

[Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm & \pm \end{array} \right.$

•
$$
\rho_{cm}^{(12)}(t) = \Pi_{i=1}^{N} \text{Tr}_{i}[\rho_{12}(t)] = \frac{1}{2} \Pi_{i=1}^{N} \frac{1}{1 + \bar{n}_{i}(1 - e^{-i\omega_{i} t g \Delta x / c^{2}})}
$$

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm & \pm \end{array} \right.$

•
$$
\rho_{cm}^{(12)}(t) = \Pi_{i=1}^{N} \text{Tr}_{i}[\rho_{12}(t)] = \frac{1}{2} \Pi_{i=1}^{N} \frac{1}{1 + \bar{n}_{i}(1 - e^{-i\omega_{i} t g \Delta x/c^{2}})}
$$

• If
$$
\omega_i t g \Delta x / c^2 \ll 1
$$
, $\rho_{cm}^{(12)}(t) \approx \frac{1}{2} \Pi_{i=1}^N \frac{1}{1 + \bar{n}_i (i \omega_i t g \Delta x / c^2)}$

→ 君下 → 君下

- To see decoherence of the centre of mass, we trace out the internal degrees of freedom
- $\bullet \ \rho_{\sf cm}^{(12)}(t) = \Pi_{i=1}^N \mathsf{Tr}_i[\rho_{12}(t)] = \frac{1}{2} \Pi_{i=1}^N \frac{1}{1+\bar{n}_i(1-e^{-t})}$ $\overline{1+\bar{n}_i(1-e^{-i\omega_i t \mathrm{g}\Delta x/c^2})}$
- If $\omega_i t g \Delta x/c^2 \ll 1$, $\rho_{\sf cm}^{(12)}(t) \approx \frac{1}{2} \Pi_{i=1}^N \frac{1}{1+\bar{n_i}(i\omega_i t)}$ $1+\bar{n_i}(i\omega_i t g\Delta x/c^2)$
- • In the high temperature limit $\bar{n}_i \approx k_B T/(\hbar\omega_i)$

•
$$
\rho_{cm}^{(12)}(t) = \Pi_{i=1}^{N} \text{Tr}_{i}[\rho_{12}(t)] = \frac{1}{2} \Pi_{i=1}^{N} \frac{1}{1 + \bar{n}_{i}(1 - e^{-i\omega_{i} t g \Delta x / c^{2}})}
$$

- If $\omega_i t g \Delta x/c^2 \ll 1$, $\rho_{\sf cm}^{(12)}(t) \approx \frac{1}{2} \Pi_{i=1}^N \frac{1}{1+\bar{n_i}(i\omega_i t)}$ $1+\bar{n_i}(i\omega_i t g\Delta x/c^2)$
- In the high temperature limit $\bar{n}_i \approx k_B T/(\hbar\omega_i)$
- $\bullet \ \vert \rho _{\text{cm}}^{(12)}(t)\vert =\frac{1}{2}% \sqrt{\frac{\pi \varepsilon _{0}}{2\pi}}\text{.} \label{eq:4}$ $\frac{1}{2}(1+(k_B T g \Delta x t/(\hbar c^2))^2)^{-N/2}$

- To see decoherence of the centre of mass, we trace out the internal degrees of freedom
- $\bullet \ \rho_{\sf cm}^{(12)}(t) = \Pi_{i=1}^N \mathsf{Tr}_i[\rho_{12}(t)] = \frac{1}{2} \Pi_{i=1}^N \frac{1}{1+\bar{n}_i(1-e^{-t})}$ $\overline{1+\bar{n}_i(1-e^{-i\omega_i t \mathrm{g}\Delta x/c^2})}$
- If $\omega_i t g \Delta x/c^2 \ll 1$, $\rho_{\sf cm}^{(12)}(t) \approx \frac{1}{2} \Pi_{i=1}^N \frac{1}{1+\bar{n_i}(i\omega_i t)}$ $1+\bar{n_i}(i\omega_i t g\Delta x/c^2)$
- In the high temperature limit $\bar{n}_i \approx k_B T/(\hbar\omega_i)$
- $\bullet \ \vert \rho _{\text{cm}}^{(12)}(t)\vert =\frac{1}{2}% \sqrt{\frac{\pi \varepsilon _{0}}{2\pi}}\text{.} \label{eq:4}$ $\frac{1}{2}(1+(k_B T g \Delta x t/(\hbar c^2))^2)^{-N/2}$
- \bullet For $t\ll N\tau_{\rm dec}$, $|\rho_{\rm cm}^{12}|$ decays exponentially with $\tau_{\rm dec}$

- To see decoherence of the centre of mass, we trace out the internal degrees of freedom
- $\bullet \ \rho_{\sf cm}^{(12)}(t) = \Pi_{i=1}^N \mathsf{Tr}_i[\rho_{12}(t)] = \frac{1}{2} \Pi_{i=1}^N \frac{1}{1+\bar{n}_i(1-e^{-t})}$ $\overline{1+\bar{n}_i(1-e^{-i\omega_i t \mathrm{g}\Delta x/c^2})}$
- If $\omega_i t g \Delta x/c^2 \ll 1$, $\rho_{\sf cm}^{(12)}(t) \approx \frac{1}{2} \Pi_{i=1}^N \frac{1}{1+\bar{n_i}(i\omega_i t)}$ $1+\bar{n_i}(i\omega_i t g\Delta x/c^2)$
- In the high temperature limit $\bar{n}_i \approx k_B T/(\hbar\omega_i)$
- $\bullet \ \vert \rho _{\text{cm}}^{(12)}(t)\vert =\frac{1}{2}% \sqrt{\frac{\pi \varepsilon _{0}}{2\pi}}\text{.} \label{eq:4}$ $\frac{1}{2}(1+(k_B T g \Delta x t/(\hbar c^2))^2)^{-N/2}$
- \bullet For $t\ll N\tau_{\rm dec}$, $|\rho_{\rm cm}^{12}|$ decays exponentially with $\tau_{\rm dec}$

$$
\bullet\ \bigg|\tau_{\text{dec}}=\sqrt{\tfrac{2}{N}}\tfrac{\hbar c^2}{k_B T g \Delta x}
$$

• Include the special relativistic time dilation using $H_{\text{int}} = \Phi(x)H_0/c^2 - p^2H_0/(2m^2c^2)$

 \leftarrow

K 御 と K 君 と K 君 と

• Include the special relativistic time dilation using $H_{\text{int}} = \Phi(x)H_0/c^2 - p^2H_0/(2m^2c^2)$

$$
\bullet \ \dot{\rho} = -\frac{i}{\hbar} [H, \rho]
$$

[Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

 \leftarrow

K 御 と K 君 と K 君 と

- Include the special relativistic time dilation using $H_{\text{int}} = \Phi(x)H_0/c^2 - p^2H_0/(2m^2c^2)$
- $\rho=-\frac{i}{\hbar}[H,\rho]$
- The evolution in the presence of time dilation is inherently non-Markovian

御 ▶ イ君 ▶ イ君 ▶

- Include the special relativistic time dilation using $H_{\text{int}} = \Phi(x)H_0/c^2 - p^2H_0/(2m^2c^2)$
- $\rho=-\frac{i}{\hbar}[H,\rho]$
- The evolution in the presence of time dilation is inherently non-Markovian

•
$$
\tau_{\text{dec}} = \sqrt{2} \frac{\hbar c^2}{N k_B T g \Delta x}
$$

御 ▶ イ君 ▶ イ君 ▶

1 [Time dilation](#page-1-0)

[General vs Special relativity-time dilation](#page-2-0) [What is the Hamiltonian ? Mass energy equivalence](#page-8-0)

2 [Model calculations](#page-23-0)

[Decoherence rate](#page-24-0) [Including special relativistic time dilation](#page-48-0)

3 Can we measure the effect on Earth? [Proposed experiments](#page-53-0) [Conclusion](#page-59-0)

化重变 化重

$$
\bullet\;\sqrt{\tau_{\text{dec}}=\sqrt{\frac{2}{N}}\frac{\hbar c^2}{k_B\,Tg\Delta x}}
$$

[Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

$$
\bullet\;\sqrt{\tau_{\text{dec}}=\sqrt{\frac{2}{N}}\frac{\hbar c^2}{k_B\,Tg\Delta x}}
$$

•
$$
N \sim 10^{23}
$$
, $\Delta x = 10^{-6}$ m, $T = 300$ K

メロメメ 御 メメ きょく ミメー [Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

●○ 299

$$
\bullet\;\sqrt{\tau_{\text{dec}}=\sqrt{\frac{2}{N}}\frac{\hbar c^2}{k_B\,Tg\Delta x}}
$$

•
$$
N \sim 10^{23}
$$
, $\Delta x = 10^{-6}$ m, $T = 300$ K

•
$$
\tau_{\text{dec}} \approx 10^{-3}
$$
 s

メロメメ 御 メメ きょく ミメー [Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

●○ 299

$$
\bullet\;\;\fbox{$\tau_{\rm dec}$} = \sqrt{\frac{2}{N}}\frac{\hbar c^2}{k_B\,Tg\Delta x}
$$

- $N \sim 10^{23}$, $\Delta x = 10^{-6}$ m, $T = 300$ K
- \bullet $\tau_{\rm dec} \approx 10^{-3}$ s
- • To see decoherence caused by time dilation, other decoherence mechanisms will need to be suppressed: The scattering with surrounding molecules and with thermal radiation requires such an experiment to be performed at liquid helium temperatures and in ultrahigh vacuum

$$
\bullet\;\;\fbox{$\tau_{\rm dec}$} = \sqrt{\frac{2}{N}}\frac{\hbar c^2}{k_B\,Tg\Delta x}
$$

- $N \sim 10^{23}$. $\Delta x = 10^{-6}$ m, $T = 300$ K
- \bullet $\tau_{\rm dec} \approx 10^{-3}$ s
- To see decoherence caused by time dilation, other decoherence mechanisms will need to be suppressed: The scattering with surrounding molecules and with thermal radiation requires such an experiment to be performed at liquid helium temperatures and in ultrahigh vacuum
- The emission and absorption of thermal radiation by the system will be a competing decoherence source (τ_{em})

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n$

Figure : Decoherence due to gravitational time dilation as compared to decoherence due to emission of thermal radiation for sapphire microspheres. In the green region time dilation is the dominant decoherence mechanism. The left axis shows various sphere radii r (corresponding to particle numbers N = 10^7 to N = 10^{18}) for a fixed superposition size Δx , whereas the right axis shows various superposition sizes for a fixed particle radius. The dashed lines correspond to the respective time dilation decoherence time scales. Sapphire was chosen for its low emission at microwave frequencies.

 \sim [Universal decoherence due to gravitational time dilation](#page-0-0) I. Pikovski, M. Zych, F. Costa, and C. Brukner - Nat. Phys.

э

4日下 \overline{A} QQ

• Our results show that general relativity can account for the suppression of quantum behaviour for macroscopic objects without introducing any modifications to quantum mechanics or to general relativity

4 17 18

 $\langle \langle \bigcap \mathbb{R} \rangle \rangle$ $\langle \bigcap \mathbb{R} \rangle$ $\langle \bigcap \mathbb{R} \rangle$

- Our results show that general relativity can account for the suppression of quantum behaviour for macroscopic objects without introducing any modifications to quantum mechanics or to general relativity
- • However, we note that the simple model for the composition of the system, necessary to estimate the time dilation decoherence rate, is very crude and at low temperatures we expect the model to break down

• Although an experiment to measure decoherence due to proper time is very challenging, the rapid developments in controlling large quantum systems for quantum metrology and for testing wavefunction collapse models will inevitably come to the regime where the time dilation induced decoherence predicted here will be of importance

∢ 何 ▶ . ∢ ヨ ▶ . ∢ ヨ ▶

- Although an experiment to measure decoherence due to proper time is very challenging, the rapid developments in controlling large quantum systems for quantum metrology and for testing wavefunction collapse models will inevitably come to the regime where the time dilation induced decoherence predicted here will be of importance
- In the long run, experiments on Earth will have to be specifically designed to avoid this gravitational effect on quantum coherence

- ④ インド ミット イコート

- Although an experiment to measure decoherence due to proper time is very challenging, the rapid developments in controlling large quantum systems for quantum metrology and for testing wavefunction collapse models will inevitably come to the regime where the time dilation induced decoherence predicted here will be of importance
- In the long run, experiments on Earth will have to be specifically designed to avoid this gravitational effect on quantum coherence
- Thank you for your attention !!!

- ∢ 何 ▶ -∢ ヨ ▶ -∢ ヨ ▶