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which the edge states are populated according to the
chemical potential of the lead that they emanate from.
This leads to a quantized conductance e2 /h associated
with each set of edge states. Figure 6!d" shows the resis-
tance measurements for a series of samples as a function
of a gate voltage which tunes the Fermi energy through
the bulk energy gap. Sample I is a narrow quantum well
that has a large resistance in the gap. Samples II–IV are
wider wells in the inverted regime. Samples III and IV
exhibit a conductance 2e2 /h associated with the top and
bottom edges. Samples III and IV have the same length
L=1 !m but different widths w=0.5 and 1 !m, indicat-
ing that transport is at the edge. Sample II !L=20 !m"
showed finite temperature scattering effects. These ex-
periments convincingly demonstrate the existence of the
edge states of the quantum spin Hall insulator. Subse-
quent experiments have established the inherently non-
local electronic transport in the edge states !Roth et al.,
2009".

IV. 3D TOPOLOGICAL INSULATORS

In the summer of 2006 three theoretical groups inde-
pendently discovered that the topological characteriza-
tion of the quantum spin Hall insulator state has a natu-
ral generalization in three dimensions !Fu, Kane, and
Mele, 2007; Moore and Balents, 2007; Roy, 2009b".
Moore and Balents !2007" coined the term “topological
insulator” to describe this electronic phase. Fu, Kane,
and Mele !2007" established the connection between the
bulk topological order and the presence of unique con-

ducting surface states. Soon after, this phase was pre-
dicted in several real materials !Fu and Kane, 2007", in-
cluding Bi1−xSbx as well as strained HgTe and "-Sn. In
2008, Hsieh et al. !2008" reported the experimental dis-
covery of the first 3D topological insulator in Bi1−xSbx.
In 2009 second-generation topological insulators, includ-
ing Bi2Se3, which has numerous desirable properties,
were identified experimentally !Xia, Qian, Hsieh, Wray,
et al., 2009" and theoretically !Xia, Qian, Hsieh, Wray, et
al., 2009; Zhang, Liu, et al., 2009". In this section we
review these developments.

A. Strong and weak topological insulators

A 3D topological insulator is characterized by four Z2
topological invariants !#0 ;#1#2#3" !Fu, Kane, and Mele,
2007; Moore and Balents, 2007; Roy, 2009b". They can
be most easily understood by appealing to the bulk-
boundary correspondence, discussed in Sec. II.C. The
surface states of a 3D crystal can be labeled with a 2D
crystal momentum. There are four T invariant points
$1,2,3,4 in the surface Brillouin zone, where surface
states, if present, must be Kramers degenerate #Figs. 7!a"
and 7!b"$. Away from these special points, the spin-orbit
interaction will lift the degeneracy. These Kramers de-
generate points therefore form 2D Dirac points in the
surface band structure #Fig. 7!c"$. The interesting ques-
tion is how the Dirac points at the different T invariant
points connect to each other. Between any pair $a and
$b, the surface-state structure will resemble either Fig.
3!a" or 3!b". This determines whether the surface Fermi
surface intersects a line joining $a to $b an even or an
odd number of times. If it is odd, then the surface states
are topologically protected. Which of these two alterna-
tives occurred is determined by the four bulk Z2 invari-
ants.

The simplest nontrivial 3D topological insulators may
be constructed by stacking layers of the 2D quantum
spin Hall insulator. This is analogous to a similar con-
struction for 3D integer quantum Hall states !Kohmoto,
Halperin, and Wu, 1992". The helical edge states of the
layers then become anisotropic surface states. A pos-
sible surface Fermi surface for weakly coupled layers
stacked along the y direction is shown in Fig. 7!a". In this
figure a single surface band intersects the Fermi energy
between $1 and $2 and between $3 and $4, leading to the
nontrivial connectivity in Fig. 3!b". This layered state is
referred to as a weak topological insulator and has #0
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FIG. 6. !Color online" Experiments on HgTe/CdTe quantum
wells. !a" Quantum well structure. !b" As a function of layer
thickness d the 2D quantum well states cross at a band inver-
sion transition. The inverted state is the QSHI, which has he-
lical edge states !c" that have a nonequilibrium population de-
termined by the leads. !d" Experimental two terminal
conductance as a function of a gate voltage that tunes EF
through the bulk gap. Sample I, with d%dc, shows insulating
behavior, while samples III and IV show quantized transport
associated with edge states. Adapted from König et al., 2007.
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FIG. 7. !Color online" Fermi circles in the surface Brillouin
zone for !a" a weak topological insulator and !b" a strong to-
pological insulator. !c" In the simplest strong topological insu-
lator the Fermi circle encloses a single Dirac point.
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insulating in the bulk, states present at the suface	



Weak TI -> stacking layers of the 2D quantum spin Hall insulator	



spin has to rotate, non-trivial Berry phase	



The surface states of a strong TI form 2D topological metal 	
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Building blocks [non-interacting case]	
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Fractional topological phases in three-dimensional coupled-wire systems

Tobias Meng1

1Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

It is shown that three-dimensional systems of coupled quantum wires support fractional topo-
logical phases composed of closed loops and open planes of two-dimensional fractional quantum
Hall subsystems. These phases have topologically protected edge states, and are separated by ex-
otic quantum phase transitions corresponding to a rearrangement of fractional quantum Hall edge
modes. It is speculated that also an extended exotic critical phase may exist. Without electron-
electron interactions, similar but unfractionalized bulk gapped phases based on coupled integer
quantum Hall states exist. They are separated by an extended critical Weyl semimetal phase.

PACS numbers: 73.21.-b, 71.10.Pm, 73.43.-f

Since the experimental discovery and theoretical expla-
nation of the fractional quantum Hall effect [1, 2], frac-
tionalization in interacting topological systems has been
an important theme in condensed matter physics. While
the understanding of fractionalized topological phases
has impressively developed in two dimensions (2D), much
less is known in three dimensions (3D). Slave-particle ap-
proaches have for instance allowed to make progress for
topological Mott insulators [3–5], and 3D fractional topo-
logical insulators [6–9]. Some exactly solvable models
have been reported [10, 11], and the Kitaev honeycomb
model [12] has been generalized to 3D lattices [13–18].
Further examples for fractionalized 3D phases include
spin ice [19–22], and stacks of 2D fractional quantum Hall
layers [23]. In the latter, inter-layer couplings can stabi-
lize many-layer versions of Halperin bilayer states [24–
26], or exotic phases with fractionally charged fermionic
3D quasiparticles [27]. Other coupled-layer constructions
[28, 29] can also exhibit string-like excitations, which in
general allow for non-trivial 3D braiding [29–33].
Instead of coupling extended layers, this work engi-

neers 3D fractional topological states by connecting 2D
building blocks of finite width along different directions.
While coupled-layer physics can be recovered by dom-
inantly coupling the building blocks along planes, the
blocks may also connect along other geometries, such as
closed loops. This gives rise to additional topological
phases and phase transitions. For concreteness, the re-
mainder studies narrow integer quantum Hall (IQH) and
fractional quantum Hall (FQH) strips as building blocks.
As a further difference to previous studies, the individual
building blocks are constructed from coupled quantum
wires containing spin-polarized electrons. Time-reversal
symmetry is thus broken from the outset. Since each wire
can be treated as a Luttinger liquid [34], this approach is
especially powerful for the analysis of interacting phases.
Starting with pioneering work of Kane et al. [35, 36],
it has been shown that coupled-wire constructions allow
for an analytically tractable description of integer and
fractional, abelian and non-abelian topological 2D states
[37–47]. Coupled-wire constructions have also lead to
qualitatively new results, including a classification of in-

FIG. 1: The building blocks A-X-B and C-Y-D, and the dis-
persions E

(·)(kx) of the different wires. On the left, strong
(weak) tunneling couplings are indicated by thick (thin) lines.

teracting topological phases [48], and the prediction of
spontaneously time-reversal-symmetry-broken states to-
wards which 2D fractional topological insulators might
be unstable [49].

The present work extends this list by adapting coupled-
wire constructions as a tool for the analysis of novel in-
teracting topological physics in 3D. The potential of this
approach is exemplified by constructing a system that
hosts several fractional topological phases. The coupled-
wire picture provides simple illustrations of these phases
in terms of closed loops (cylinders) and open planes of
IQH and FQH subsystems. It furthermore allows to iden-
tify a regime in which an extended exotic critical phase
may exist.

Integer and fractional quantum Hall building blocks.
The abelian, but in general fractionalized, phases stud-
ied in the remainder are constructed from the two fun-
damental building blocks A-X-B and C-Y-D shown in
Fig. 1. The dispersions of the electron-type wires A and
B, and the hole-type wires C and D, are asymmetrical
with respect to zero momentum kx along the wires. For

SOI + magnetic field	



k1=0	


k2=k3	



S. L. Sondhi and K. Yang, Phys. Rev. B 63, 054430 (2001)	





3D system of non-interacting wires	
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a given chemical potential µ, the Fermi points in wires A
and C reside at momentum kx = −k1,2, while they are
located at kx = +k1,2 in wires B and D. This can be real-
ized in spinful wires with spin-orbit coupling, which are
polarized by a magnetic field parallel to the spin-orbit
direction. The central wire X is of hole-type, while Y
is of electron-type. They have Fermi points at momenta
kx = ±k3. In each building block, the close-by inner and
outer wires are tunnel coupled by a strong hopping term.
A direct tunneling, albeit of reduced strength, also exists
between the more distant outer wires.
From Ref. [34], it follows that the building blocks form

narrow IQH strips of opposite chirality if k1 = 0 and k2 =
k3. This can be motivated by noting that the dominant
tunneling between the inner and outer wires induce large
gaps for the counterpropagating modes at k2 = k3, and
−k2 = −k3, such that the central wire X (Y) forms the
bulk of a three wire wide IQH strip. A right-moving edge
mode of momentum kx ≈ k1 = 0 lives in wire A (D),
while a left-moving edge mode is located in wire B (C).
In an isolated building block, these edge modes acquire
a small gap due to both their overlap across the central
wire, and the direct tunneling between the outer wires.
In the presence of electron-electron interactions, and if

the filling is reduced, the building blocks can enter FQH
states [35]. A Laughlin state at an effective filling factor
ν = 1/(2m+ 1) with positive integer m can for instance
arise for k1 = mk3 and k2 = (m + 1)k3. While single-
particle tunneling between counterpropagating modes is
then forbidden by momentum conservation, correlated
tunnelings can drive the building blocks into FQH states,
see below. The central wire X (Y) then constitutes the
gapped bulk of a now FQH strip, while the outer wires
again host chiral edge modes.
3D system of non-interacting wires. To realize 3D

topological phases, I consider the periodic array shown
in Fig. 2. I require the tunnelings between the inner and
outer wires in each building block to be the largest energy
scale after the bandwidth of the wires, and the chemical
potential. Additional tunnelings between wires X and C,
and X and D within a unit cell, as well as between wires
Y and A, and Y and B in neighboring unit cells, which
compete with the dominant intra building block tunnel-
ings, can then be neglected, and the low-energy physics
of the array is fully described by the IQH or FQH edge
modes in wires A, B, C, D, and the interactions and tun-
nelings between them.
Focussing first on the IQH case k1 = 0, k2 = k3, the

low-energy dispersions of the edge modes are well approx-
imated by ±vFkx, where vF denotes the Fermi velocity.
Along the y direction, I assume neighboring edge modes
to be coupled by small alternating hoppings ty1 and ty2,
whose strengths can be controlled by the inter wire dis-
tances. I take these hoppings to be shifted by one edge
mode in the next (x, y) layer. Along z, I assume neigh-
boring edge modes to be coupled by small tunnelings tz1

FIG. 2: Section of the periodic 3D system (the dotted box
shows the unit cell). Thick dotted diagonal lines depict the
dominant hoppings in each A-X-B and C-Y-D building block,
thin dotted diagonal lines indicate the subleading hoppings
between the X and C, D (Y and A, B) wires. The edge mode
couplings are ty1 along solid lines, ty2 along dashed lines, tz1
along dotted vertical lines, and tz2 along dash-dotted lines.

within the unit cell, and tz2 between two adjacent unit
cells. All tunnel couplings are positive.
Labelling the unit cells by an index p in y direction and

q in z direction, the array is described by the low-energy
Hamiltonian

H =
∑

kx

∑

p,q,p′q′

Ψ†
kxpq

(

H11δq,q′ H12δp,p′

H21δp,p′ H22δq,q′

)

Ψkxp′q′ ,

(1)

H11 =

(

vFkxδp,p′ ty1δp,p′ + ty2δp,p′+1

ty1δp,p′ + ty2δp,p′−1 −vFkxδp,p′

)

, (2)

H12 = (tz1δq,q′ + tz2δq,q′−1)12×2 , (3)

H21 = (tz1δq,q′ + tz2δq,q′+1)12×2 , (4)

H22 =

(

−vFkxδp,p′ ty2δp,p′ + ty1δp,p′+1

ty2δp,p′ + ty1δp,p′−1 vFkxδp,p′

)

, (5)

where Ψkxpq = (c(A)
kxpq

, c(B)
kxpq

, c(C)
kxpq

, c(D)
kxpq

)T is the vec-
tor of annihilation operators for edge mode electrons
with momentum kx in wire A, B, C, and D of unit
cell (p, q). This Hamiltonian is essentially identical to
the low-energy description of stacked topological insu-
lators analyzed by Burkov and Balents [50]. Follow-
ing their calculation, Eq. (1) is Fourier transformed to
momenta −π/ay,z ≤ ky,z < π/ay,z, where ay (az) is
the unit cell distance in y (z) direction. The Fourier
transform of Ψkxpq

is Ψ
k
, where k = (kx, ky, kz)T de-

notes the 3D momentum. It is then useful to per-

form the gauge transformations c(B)
k

→ eikyay/2 c(B)
k

,

c(C)
k

→ e−ikzaz/2 c(C)
k

, c(D)
k

→ eikyay/2 e−ikzaz/2 c(D)
k

, and
to introduce a pseudospin σ within the A, B, and C,
D subspaces, acted on by Pauli matrices σx,y,z, as well
as a pseudospin τ between these two subspaces. After
the canonical transformation σy → σyτz , σz → σzτz,
τx → τxσx, τy → τyσx, the diagonalization of the τ -sector

yields H =
∑

k
Ψ†

k
diag(Hk,+,Hk,−)Ψk

with Hk,± =
vFkxσz +M±(k)σx− ty− sin(kyay/2)σy, where M±(k) =

±
√

t2z1 + t2z2 + 2tz1tz2 cos(kzaz) + ty+ cos(kyay/2), and

largest energy scale in the system 	


[together with wire bandwidth]	



unit cell has 4 modes	
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located at kx = +k1,2 in wires B and D. This can be real-
ized in spinful wires with spin-orbit coupling, which are
polarized by a magnetic field parallel to the spin-orbit
direction. The central wire X is of hole-type, while Y
is of electron-type. They have Fermi points at momenta
kx = ±k3. In each building block, the close-by inner and
outer wires are tunnel coupled by a strong hopping term.
A direct tunneling, albeit of reduced strength, also exists
between the more distant outer wires.
From Ref. [34], it follows that the building blocks form

narrow IQH strips of opposite chirality if k1 = 0 and k2 =
k3. This can be motivated by noting that the dominant
tunneling between the inner and outer wires induce large
gaps for the counterpropagating modes at k2 = k3, and
−k2 = −k3, such that the central wire X (Y) forms the
bulk of a three wire wide IQH strip. A right-moving edge
mode of momentum kx ≈ k1 = 0 lives in wire A (D),
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wire, and the direct tunneling between the outer wires.
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states [35]. A Laughlin state at an effective filling factor
ν = 1/(2m+ 1) with positive integer m can for instance
arise for k1 = mk3 and k2 = (m + 1)k3. While single-
particle tunneling between counterpropagating modes is
then forbidden by momentum conservation, correlated
tunnelings can drive the building blocks into FQH states,
see below. The central wire X (Y) then constitutes the
gapped bulk of a now FQH strip, while the outer wires
again host chiral edge modes.
3D system of non-interacting wires. To realize 3D

topological phases, I consider the periodic array shown
in Fig. 2. I require the tunnelings between the inner and
outer wires in each building block to be the largest energy
scale after the bandwidth of the wires, and the chemical
potential. Additional tunnelings between wires X and C,
and X and D within a unit cell, as well as between wires
Y and A, and Y and B in neighboring unit cells, which
compete with the dominant intra building block tunnel-
ings, can then be neglected, and the low-energy physics
of the array is fully described by the IQH or FQH edge
modes in wires A, B, C, D, and the interactions and tun-
nelings between them.
Focussing first on the IQH case k1 = 0, k2 = k3, the

low-energy dispersions of the edge modes are well approx-
imated by ±vFkx, where vF denotes the Fermi velocity.
Along the y direction, I assume neighboring edge modes
to be coupled by small alternating hoppings ty1 and ty2,
whose strengths can be controlled by the inter wire dis-
tances. I take these hoppings to be shifted by one edge
mode in the next (x, y) layer. Along z, I assume neigh-
boring edge modes to be coupled by small tunnelings tz1

FIG. 2: Section of the periodic 3D system (the dotted box
shows the unit cell). Thick dotted diagonal lines depict the
dominant hoppings in each A-X-B and C-Y-D building block,
thin dotted diagonal lines indicate the subleading hoppings
between the X and C, D (Y and A, B) wires. The edge mode
couplings are ty1 along solid lines, ty2 along dashed lines, tz1
along dotted vertical lines, and tz2 along dash-dotted lines.
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, (5)
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cell (p, q). This Hamiltonian is essentially identical to
the low-energy description of stacked topological insu-
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and C reside at momentum kx = −k1,2, while they are
located at kx = +k1,2 in wires B and D. This can be real-
ized in spinful wires with spin-orbit coupling, which are
polarized by a magnetic field parallel to the spin-orbit
direction. The central wire X is of hole-type, while Y
is of electron-type. They have Fermi points at momenta
kx = ±k3. In each building block, the close-by inner and
outer wires are tunnel coupled by a strong hopping term.
A direct tunneling, albeit of reduced strength, also exists
between the more distant outer wires.
From Ref. [34], it follows that the building blocks form

narrow IQH strips of opposite chirality if k1 = 0 and k2 =
k3. This can be motivated by noting that the dominant
tunneling between the inner and outer wires induce large
gaps for the counterpropagating modes at k2 = k3, and
−k2 = −k3, such that the central wire X (Y) forms the
bulk of a three wire wide IQH strip. A right-moving edge
mode of momentum kx ≈ k1 = 0 lives in wire A (D),
while a left-moving edge mode is located in wire B (C).
In an isolated building block, these edge modes acquire
a small gap due to both their overlap across the central
wire, and the direct tunneling between the outer wires.
In the presence of electron-electron interactions, and if

the filling is reduced, the building blocks can enter FQH
states [35]. A Laughlin state at an effective filling factor
ν = 1/(2m+ 1) with positive integer m can for instance
arise for k1 = mk3 and k2 = (m + 1)k3. While single-
particle tunneling between counterpropagating modes is
then forbidden by momentum conservation, correlated
tunnelings can drive the building blocks into FQH states,
see below. The central wire X (Y) then constitutes the
gapped bulk of a now FQH strip, while the outer wires
again host chiral edge modes.
3D system of non-interacting wires. To realize 3D

topological phases, I consider the periodic array shown
in Fig. 2. I require the tunnelings between the inner and
outer wires in each building block to be the largest energy
scale after the bandwidth of the wires, and the chemical
potential. Additional tunnelings between wires X and C,
and X and D within a unit cell, as well as between wires
Y and A, and Y and B in neighboring unit cells, which
compete with the dominant intra building block tunnel-
ings, can then be neglected, and the low-energy physics
of the array is fully described by the IQH or FQH edge
modes in wires A, B, C, D, and the interactions and tun-
nelings between them.
Focussing first on the IQH case k1 = 0, k2 = k3, the

low-energy dispersions of the edge modes are well approx-
imated by ±vFkx, where vF denotes the Fermi velocity.
Along the y direction, I assume neighboring edge modes
to be coupled by small alternating hoppings ty1 and ty2,
whose strengths can be controlled by the inter wire dis-
tances. I take these hoppings to be shifted by one edge
mode in the next (x, y) layer. Along z, I assume neigh-
boring edge modes to be coupled by small tunnelings tz1
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and C reside at momentum kx = −k1,2, while they are
located at kx = +k1,2 in wires B and D. This can be real-
ized in spinful wires with spin-orbit coupling, which are
polarized by a magnetic field parallel to the spin-orbit
direction. The central wire X is of hole-type, while Y
is of electron-type. They have Fermi points at momenta
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outer wires are tunnel coupled by a strong hopping term.
A direct tunneling, albeit of reduced strength, also exists
between the more distant outer wires.
From Ref. [34], it follows that the building blocks form
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k3. This can be motivated by noting that the dominant
tunneling between the inner and outer wires induce large
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−k2 = −k3, such that the central wire X (Y) forms the
bulk of a three wire wide IQH strip. A right-moving edge
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In an isolated building block, these edge modes acquire
a small gap due to both their overlap across the central
wire, and the direct tunneling between the outer wires.
In the presence of electron-electron interactions, and if

the filling is reduced, the building blocks can enter FQH
states [35]. A Laughlin state at an effective filling factor
ν = 1/(2m+ 1) with positive integer m can for instance
arise for k1 = mk3 and k2 = (m + 1)k3. While single-
particle tunneling between counterpropagating modes is
then forbidden by momentum conservation, correlated
tunnelings can drive the building blocks into FQH states,
see below. The central wire X (Y) then constitutes the
gapped bulk of a now FQH strip, while the outer wires
again host chiral edge modes.
3D system of non-interacting wires. To realize 3D

topological phases, I consider the periodic array shown
in Fig. 2. I require the tunnelings between the inner and
outer wires in each building block to be the largest energy
scale after the bandwidth of the wires, and the chemical
potential. Additional tunnelings between wires X and C,
and X and D within a unit cell, as well as between wires
Y and A, and Y and B in neighboring unit cells, which
compete with the dominant intra building block tunnel-
ings, can then be neglected, and the low-energy physics
of the array is fully described by the IQH or FQH edge
modes in wires A, B, C, D, and the interactions and tun-
nelings between them.
Focussing first on the IQH case k1 = 0, k2 = k3, the

low-energy dispersions of the edge modes are well approx-
imated by ±vFkx, where vF denotes the Fermi velocity.
Along the y direction, I assume neighboring edge modes
to be coupled by small alternating hoppings ty1 and ty2,
whose strengths can be controlled by the inter wire dis-
tances. I take these hoppings to be shifted by one edge
mode in the next (x, y) layer. Along z, I assume neigh-
boring edge modes to be coupled by small tunnelings tz1

FIG. 2: Section of the periodic 3D system (the dotted box
shows the unit cell). Thick dotted diagonal lines depict the
dominant hoppings in each A-X-B and C-Y-D building block,
thin dotted diagonal lines indicate the subleading hoppings
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along dotted vertical lines, and tz2 along dash-dotted lines.

within the unit cell, and tz2 between two adjacent unit
cells. All tunnel couplings are positive.
Labelling the unit cells by an index p in y direction and

q in z direction, the array is described by the low-energy
Hamiltonian

H =
∑

kx

∑

p,q,p′q′

Ψ†
kxpq

(

H11δq,q′ H12δp,p′

H21δp,p′ H22δq,q′

)

Ψkxp′q′ ,

(1)

H11 =

(

vFkxδp,p′ ty1δp,p′ + ty2δp,p′+1

ty1δp,p′ + ty2δp,p′−1 −vFkxδp,p′

)

, (2)

H12 = (tz1δq,q′ + tz2δq,q′−1)12×2 , (3)

H21 = (tz1δq,q′ + tz2δq,q′+1)12×2 , (4)

H22 =

(

−vFkxδp,p′ ty2δp,p′ + ty1δp,p′+1

ty2δp,p′ + ty1δp,p′−1 vFkxδp,p′

)

, (5)

where Ψkxpq = (c(A)
kxpq

, c(B)
kxpq

, c(C)
kxpq

, c(D)
kxpq

)T is the vec-
tor of annihilation operators for edge mode electrons
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cell (p, q). This Hamiltonian is essentially identical to
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and C reside at momentum kx = −k1,2, while they are
located at kx = +k1,2 in wires B and D. This can be real-
ized in spinful wires with spin-orbit coupling, which are
polarized by a magnetic field parallel to the spin-orbit
direction. The central wire X is of hole-type, while Y
is of electron-type. They have Fermi points at momenta
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outer wires are tunnel coupled by a strong hopping term.
A direct tunneling, albeit of reduced strength, also exists
between the more distant outer wires.
From Ref. [34], it follows that the building blocks form

narrow IQH strips of opposite chirality if k1 = 0 and k2 =
k3. This can be motivated by noting that the dominant
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and C reside at momentum kx = −k1,2, while they are
located at kx = +k1,2 in wires B and D. This can be real-
ized in spinful wires with spin-orbit coupling, which are
polarized by a magnetic field parallel to the spin-orbit
direction. The central wire X is of hole-type, while Y
is of electron-type. They have Fermi points at momenta
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particle tunneling between counterpropagating modes is
then forbidden by momentum conservation, correlated
tunnelings can drive the building blocks into FQH states,
see below. The central wire X (Y) then constitutes the
gapped bulk of a now FQH strip, while the outer wires
again host chiral edge modes.
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topological phases, I consider the periodic array shown
in Fig. 2. I require the tunnelings between the inner and
outer wires in each building block to be the largest energy
scale after the bandwidth of the wires, and the chemical
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compete with the dominant intra building block tunnel-
ings, can then be neglected, and the low-energy physics
of the array is fully described by the IQH or FQH edge
modes in wires A, B, C, D, and the interactions and tun-
nelings between them.
Focussing first on the IQH case k1 = 0, k2 = k3, the

low-energy dispersions of the edge modes are well approx-
imated by ±vFkx, where vF denotes the Fermi velocity.
Along the y direction, I assume neighboring edge modes
to be coupled by small alternating hoppings ty1 and ty2,
whose strengths can be controlled by the inter wire dis-
tances. I take these hoppings to be shifted by one edge
mode in the next (x, y) layer. Along z, I assume neigh-
boring edge modes to be coupled by small tunnelings tz1
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along dotted vertical lines, and tz2 along dash-dotted lines.

within the unit cell, and tz2 between two adjacent unit
cells. All tunnel couplings are positive.
Labelling the unit cells by an index p in y direction and

q in z direction, the array is described by the low-energy
Hamiltonian

H =
∑

kx

∑

p,q,p′q′

Ψ†
kxpq

(

H11δq,q′ H12δp,p′

H21δp,p′ H22δq,q′

)

Ψkxp′q′ ,

(1)

H11 =

(

vFkxδp,p′ ty1δp,p′ + ty2δp,p′+1

ty1δp,p′ + ty2δp,p′−1 −vFkxδp,p′

)

, (2)

H12 = (tz1δq,q′ + tz2δq,q′−1)12×2 , (3)

H21 = (tz1δq,q′ + tz2δq,q′+1)12×2 , (4)

H22 =

(

−vFkxδp,p′ ty2δp,p′ + ty1δp,p′+1

ty2δp,p′ + ty1δp,p′−1 vFkxδp,p′

)

, (5)

where Ψkxpq = (c(A)
kxpq

, c(B)
kxpq

, c(C)
kxpq

, c(D)
kxpq

)T is the vec-
tor of annihilation operators for edge mode electrons
with momentum kx in wire A, B, C, and D of unit
cell (p, q). This Hamiltonian is essentially identical to
the low-energy description of stacked topological insu-
lators analyzed by Burkov and Balents [50]. Follow-
ing their calculation, Eq. (1) is Fourier transformed to
momenta −π/ay,z ≤ ky,z < π/ay,z, where ay (az) is
the unit cell distance in y (z) direction. The Fourier
transform of Ψkxpq

is Ψ
k
, where k = (kx, ky, kz)T de-

notes the 3D momentum. It is then useful to per-

form the gauge transformations c(B)
k

→ eikyay/2 c(B)
k

,

c(C)
k

→ e−ikzaz/2 c(C)
k

, c(D)
k

→ eikyay/2 e−ikzaz/2 c(D)
k

, and
to introduce a pseudospin σ within the A, B, and C,
D subspaces, acted on by Pauli matrices σx,y,z, as well
as a pseudospin τ between these two subspaces. After
the canonical transformation σy → σyτz , σz → σzτz,
τx → τxσx, τy → τyσx, the diagonalization of the τ -sector

yields H =
∑

k
Ψ†

k
diag(Hk,+,Hk,−)Ψk

with Hk,± =
vFkxσz +M±(k)σx− ty− sin(kyay/2)σy, where M±(k) =

±
√

t2z1 + t2z2 + 2tz1tz2 cos(kzaz) + ty+ cos(kyay/2), and

2

a given chemical potential µ, the Fermi points in wires A
and C reside at momentum kx = −k1,2, while they are
located at kx = +k1,2 in wires B and D. This can be real-
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A direct tunneling, albeit of reduced strength, also exists
between the more distant outer wires.
From Ref. [34], it follows that the building blocks form

narrow IQH strips of opposite chirality if k1 = 0 and k2 =
k3. This can be motivated by noting that the dominant
tunneling between the inner and outer wires induce large
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FIG. 3: Phase diagram in the non-interacting (left), and
interacting (right) case with normal insulating (NI), (frac-
tional) quantum anomalous Hall ((F)QAH), Weyl semimetal
(WS), and single-surface (fractional) quantum anomalous
Hall (SS(F)QAH) phases. In a lattice model, the filling would
be 1/2 (1/6) in the non-interacting (interacting) case.

using ty± = ty1 ± ty2.

Phase diagram of the non-interacting model. Despite
being described by the same low-energy Hamiltonian as
stacked topological insulators, I find that the array of
coupled wires can enter a single-surface quantum anoma-
lous Hall (SSQAH) phase which is not present in Ref. [50].
This phase is realized for ty1 + ty2 < |tz1 − tz2| and
tz1 < tz2, and has a single quantum Hall layer formed
by the the topmost (for ty1 < ty2) or bottommost (for
ty1 > ty2) layer of wires, see below. Interestingly, the ra-
tio ty1/ty2 thus provides an experimental knob to choose
the surface on which the single quantum Hall layer, her-
alded by its gapless edge state, appears.

All other phases of the array are, however, similar to
Ref. [50]. For ty1 + ty2 < |tz1 − tz2| and tz1 > tz2, the
system is a normal insulator (NI). If |tz1 − tz2| ≤ ty1 +
ty2 ≤ tz1+tz2, the array of wires forms a Weyl semimetal
(WS) with two gapless Weyl nodes of opposite chirality
at k± = (0, 0,π/az ± kz0)T , where kz0 = arccos(1 −
[(ty1+ty2)2−(tz1−tz2)2]/2tz1tz2)/az. Surfaces then have
a Fermi arc between the projection of the Weyl nodes,
and show a finite Hall conductivity proportional to the
distance of the projected Weyl nodes. For ty1 + ty2 >
tz1 + tz2, finally, the system is in a quantum anomalous
Hall (QAH) phase, and exhibits a Hall conductivity of
σxy = e2/h per (x, y) layer of units cells on surfaces with
a normal in the (x, y) plane. The phase diagram of the
array of wires is shown in Fig. 3. I have checked that
the bulk phase transitions as obtained from the effective
low-energy model, and the presence of a Weyl semimetal
phase qualitatively agree with a tight-binding calculation
that includes all wires and tunnelings (also the subleading
tunnelings between wires X, C, and D, as well as Y, A,
and B).

Besides a blueprint for the constructivist engineering of
3D topological states, the coupled-wire construction also
provides a particularly simple visualization of the bulk
gapped phases based on their hierarchy of tunneling cou-
plings. Along the dominant tunnelings, the edge modes

FIG. 4: Coupled-wire visualization of the gapped phases for
ty1 < ty2. Thick solid lines depict the dominant couplings
along which closed loops and open planes of integer or frac-
tional quantum Hall layers form. Open planes are associated
with chiral edge modes illustrated by thick lines with arrows.

of the individual building blocks form closed loops and
open planes of quantum Hall layers, see Fig. 4. In the
NI phase, all building blocks connect along closed loops,
resulting in a full gap. The QAH phase, on the other
hand, consists of open quantum Hall planes alternating
with closed quantum Hall loops. Since each open plane
comes with a gapless edge mode, the Hall conductivity is
indeed σxy = e2/h per (x, y) layer of units cells. In the
SSQAH phase, all building blocks form trivial quantum
Hall loops, except for the ones on the topmost or bottom-
most layer (depending on the ratio ty1/ty2). These form
a single open quantum Hall plane. The Weyl semimetal
phase, finally, occurs if the competing tunnelings along
y and z are of similar strength. The system then enters
a critical phase with gapless states of definite momen-
tum (the states at the Weyl nodes), which has no simple
real-space picture.
Electron-electron interactions and fractionalization.

While the analysis of the non-interacting array identi-
fied the SSQAH phase as a novel 3D state, and gives
simple physical pictures of the bulk gapped phases, the
true power of coupled-wire constructions lies in the de-
scription of interacting systems. To tackle these, I lin-
earize the spectrum of each wire n around the Fermi
points at ±k1,2,3, and decompose the electron operators
into right (R) and left (L) moving modes as cn(x) =
eikFRnxRn(x)+eikFLnxLn(x), where the respective Fermi
momentum is kFrn, and r = R,L. For k1 = mk3 and
k2 = (m+1)k3 with positive integer m, momentum con-
servation forbids single-particle tunneling between coun-
terpropagating modes. The combination of electron-
electron interactions and tunneling, however, still gen-
erates momentum conserving correlated backscatterings
between neighboring wires. I find that the bulk of the
A-X-B (C-Y-D) building blocks can be gapped by the
correlated tunnelings
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Similarly, the edge modes of the building blocks are cou-
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Hall (QAH) phase, and exhibits a Hall conductivity of
σxy = e2/h per (x, y) layer of units cells on surfaces with
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array of wires is shown in Fig. 3. I have checked that
the bulk phase transitions as obtained from the effective
low-energy model, and the presence of a Weyl semimetal
phase qualitatively agree with a tight-binding calculation
that includes all wires and tunnelings (also the subleading
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NI phase, all building blocks connect along closed loops,
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phase, finally, occurs if the competing tunnelings along
y and z are of similar strength. The system then enters
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real-space picture.
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While the analysis of the non-interacting array identi-
fied the SSQAH phase as a novel 3D state, and gives
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earize the spectrum of each wire n around the Fermi
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servation forbids single-particle tunneling between coun-
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electron interactions and tunneling, however, still gen-
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between neighboring wires. I find that the bulk of the
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y and z are of similar strength. The system then enters
a critical phase with gapless states of definite momen-
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eikFRnxRn(x)+eikFLnxLn(x), where the respective Fermi
momentum is kFrn, and r = R,L. For k1 = mk3 and
k2 = (m+1)k3 with positive integer m, momentum con-
servation forbids single-particle tunneling between coun-
terpropagating modes. The combination of electron-
electron interactions and tunneling, however, still gen-
erates momentum conserving correlated backscatterings
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Hall (QAH) phase, and exhibits a Hall conductivity of
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array of wires is shown in Fig. 3. I have checked that
the bulk phase transitions as obtained from the effective
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phase qualitatively agree with a tight-binding calculation
that includes all wires and tunnelings (also the subleading
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momentum is kFrn, and r = R,L. For k1 = mk3 and
k2 = (m+1)k3 with positive integer m, momentum con-
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earize the spectrum of each wire n around the Fermi
points at ±k1,2,3, and decompose the electron operators
into right (R) and left (L) moving modes as cn(x) =
eikFRnxRn(x)+eikFLnxLn(x), where the respective Fermi
momentum is kFrn, and r = R,L. For k1 = mk3 and
k2 = (m+1)k3 with positive integer m, momentum con-
servation forbids single-particle tunneling between coun-
terpropagating modes. The combination of electron-
electron interactions and tunneling, however, still gen-
erates momentum conserving correlated backscatterings
between neighboring wires. I find that the bulk of the
A-X-B (C-Y-D) building blocks can be gapped by the
correlated tunnelings
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Similarly, the edge modes of the building blocks are cou-
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FIG. 3: Phase diagram in the non-interacting (left), and
interacting (right) case with normal insulating (NI), (frac-
tional) quantum anomalous Hall ((F)QAH), Weyl semimetal
(WS), and single-surface (fractional) quantum anomalous
Hall (SS(F)QAH) phases. In a lattice model, the filling would
be 1/2 (1/6) in the non-interacting (interacting) case.

using ty± = ty1 ± ty2.

Phase diagram of the non-interacting model. Despite
being described by the same low-energy Hamiltonian as
stacked topological insulators, I find that the array of
coupled wires can enter a single-surface quantum anoma-
lous Hall (SSQAH) phase which is not present in Ref. [50].
This phase is realized for ty1 + ty2 < |tz1 − tz2| and
tz1 < tz2, and has a single quantum Hall layer formed
by the the topmost (for ty1 < ty2) or bottommost (for
ty1 > ty2) layer of wires, see below. Interestingly, the ra-
tio ty1/ty2 thus provides an experimental knob to choose
the surface on which the single quantum Hall layer, her-
alded by its gapless edge state, appears.

All other phases of the array are, however, similar to
Ref. [50]. For ty1 + ty2 < |tz1 − tz2| and tz1 > tz2, the
system is a normal insulator (NI). If |tz1 − tz2| ≤ ty1 +
ty2 ≤ tz1+tz2, the array of wires forms a Weyl semimetal
(WS) with two gapless Weyl nodes of opposite chirality
at k± = (0, 0,π/az ± kz0)T , where kz0 = arccos(1 −
[(ty1+ty2)2−(tz1−tz2)2]/2tz1tz2)/az. Surfaces then have
a Fermi arc between the projection of the Weyl nodes,
and show a finite Hall conductivity proportional to the
distance of the projected Weyl nodes. For ty1 + ty2 >
tz1 + tz2, finally, the system is in a quantum anomalous
Hall (QAH) phase, and exhibits a Hall conductivity of
σxy = e2/h per (x, y) layer of units cells on surfaces with
a normal in the (x, y) plane. The phase diagram of the
array of wires is shown in Fig. 3. I have checked that
the bulk phase transitions as obtained from the effective
low-energy model, and the presence of a Weyl semimetal
phase qualitatively agree with a tight-binding calculation
that includes all wires and tunnelings (also the subleading
tunnelings between wires X, C, and D, as well as Y, A,
and B).

Besides a blueprint for the constructivist engineering of
3D topological states, the coupled-wire construction also
provides a particularly simple visualization of the bulk
gapped phases based on their hierarchy of tunneling cou-
plings. Along the dominant tunnelings, the edge modes

FIG. 4: Coupled-wire visualization of the gapped phases for
ty1 < ty2. Thick solid lines depict the dominant couplings
along which closed loops and open planes of integer or frac-
tional quantum Hall layers form. Open planes are associated
with chiral edge modes illustrated by thick lines with arrows.

of the individual building blocks form closed loops and
open planes of quantum Hall layers, see Fig. 4. In the
NI phase, all building blocks connect along closed loops,
resulting in a full gap. The QAH phase, on the other
hand, consists of open quantum Hall planes alternating
with closed quantum Hall loops. Since each open plane
comes with a gapless edge mode, the Hall conductivity is
indeed σxy = e2/h per (x, y) layer of units cells. In the
SSQAH phase, all building blocks form trivial quantum
Hall loops, except for the ones on the topmost or bottom-
most layer (depending on the ratio ty1/ty2). These form
a single open quantum Hall plane. The Weyl semimetal
phase, finally, occurs if the competing tunnelings along
y and z are of similar strength. The system then enters
a critical phase with gapless states of definite momen-
tum (the states at the Weyl nodes), which has no simple
real-space picture.
Electron-electron interactions and fractionalization.

While the analysis of the non-interacting array identi-
fied the SSQAH phase as a novel 3D state, and gives
simple physical pictures of the bulk gapped phases, the
true power of coupled-wire constructions lies in the de-
scription of interacting systems. To tackle these, I lin-
earize the spectrum of each wire n around the Fermi
points at ±k1,2,3, and decompose the electron operators
into right (R) and left (L) moving modes as cn(x) =
eikFRnxRn(x)+eikFLnxLn(x), where the respective Fermi
momentum is kFrn, and r = R,L. For k1 = mk3 and
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servation forbids single-particle tunneling between coun-
terpropagating modes. The combination of electron-
electron interactions and tunneling, however, still gen-
erates momentum conserving correlated backscatterings
between neighboring wires. I find that the bulk of the
A-X-B (C-Y-D) building blocks can be gapped by the
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Fractional topological phases in three-dimensional coupled-wire systems

Tobias Meng1

1Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

It is shown that three-dimensional systems of coupled quantum wires support fractional topo-
logical phases composed of closed loops and open planes of two-dimensional fractional quantum
Hall subsystems. These phases have topologically protected edge states, and are separated by ex-
otic quantum phase transitions corresponding to a rearrangement of fractional quantum Hall edge
modes. It is speculated that also an extended exotic critical phase may exist. Without electron-
electron interactions, similar but unfractionalized bulk gapped phases based on coupled integer
quantum Hall states exist. They are separated by an extended critical Weyl semimetal phase.

PACS numbers: 73.21.-b, 71.10.Pm, 73.43.-f

Since the experimental discovery and theoretical expla-
nation of the fractional quantum Hall effect [1, 2], frac-
tionalization in interacting topological systems has been
an important theme in condensed matter physics. While
the understanding of fractionalized topological phases
has impressively developed in two dimensions (2D), much
less is known in three dimensions (3D). Slave-particle ap-
proaches have for instance allowed to make progress for
topological Mott insulators [3–5], and 3D fractional topo-
logical insulators [6–9]. Some exactly solvable models
have been reported [10, 11], and the Kitaev honeycomb
model [12] has been generalized to 3D lattices [13–18].
Further examples for fractionalized 3D phases include
spin ice [19–22], and stacks of 2D fractional quantum Hall
layers [23]. In the latter, inter-layer couplings can stabi-
lize many-layer versions of Halperin bilayer states [24–
26], or exotic phases with fractionally charged fermionic
3D quasiparticles [27]. Other coupled-layer constructions
[28, 29] can also exhibit string-like excitations, which in
general allow for non-trivial 3D braiding [29–33].
Instead of coupling extended layers, this work engi-

neers 3D fractional topological states by connecting 2D
building blocks of finite width along different directions.
While coupled-layer physics can be recovered by dom-
inantly coupling the building blocks along planes, the
blocks may also connect along other geometries, such as
closed loops. This gives rise to additional topological
phases and phase transitions. For concreteness, the re-
mainder studies narrow integer quantum Hall (IQH) and
fractional quantum Hall (FQH) strips as building blocks.
As a further difference to previous studies, the individual
building blocks are constructed from coupled quantum
wires containing spin-polarized electrons. Time-reversal
symmetry is thus broken from the outset. Since each wire
can be treated as a Luttinger liquid [34], this approach is
especially powerful for the analysis of interacting phases.
Starting with pioneering work of Kane et al. [35, 36],
it has been shown that coupled-wire constructions allow
for an analytically tractable description of integer and
fractional, abelian and non-abelian topological 2D states
[37–47]. Coupled-wire constructions have also lead to
qualitatively new results, including a classification of in-

FIG. 1: The building blocks A-X-B and C-Y-D, and the dis-
persions E

(·)(kx) of the different wires. On the left, strong
(weak) tunneling couplings are indicated by thick (thin) lines.

teracting topological phases [48], and the prediction of
spontaneously time-reversal-symmetry-broken states to-
wards which 2D fractional topological insulators might
be unstable [49].

The present work extends this list by adapting coupled-
wire constructions as a tool for the analysis of novel in-
teracting topological physics in 3D. The potential of this
approach is exemplified by constructing a system that
hosts several fractional topological phases. The coupled-
wire picture provides simple illustrations of these phases
in terms of closed loops (cylinders) and open planes of
IQH and FQH subsystems. It furthermore allows to iden-
tify a regime in which an extended exotic critical phase
may exist.

Integer and fractional quantum Hall building blocks.
The abelian, but in general fractionalized, phases stud-
ied in the remainder are constructed from the two fun-
damental building blocks A-X-B and C-Y-D shown in
Fig. 1. The dispersions of the electron-type wires A and
B, and the hole-type wires C and D, are asymmetrical
with respect to zero momentum kx along the wires. For
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To understand how these couplings lead to Laughlin
states at filling ν = 1/(2m+ 1), it is most convenient to
switch to a bosonized language [51] following Kane et al.
[35]. The couplings then translate to sine-Gordon terms,
and open gaps if their prefactors are large enough to pin
their arguments to one of the minima of the respective
cosine potential. Since one can always find a Hamiltonian
that renders the different sine-Gordon terms relevant in
the renormalization group (RG) sense [35], it is always
possible to reach this situation at low energies.
Like in the previous section, I now take the coupling

of the inner and outer wires in each building block to be
the largest correlated tunneling, which puts each build-
ing block in an FQH state. I find that the smaller
edge mode couplings in Eq. (7) again compete with each
other, and study an array with the same relative cou-
pling strengths as before (alternating couplings along y,
shifted by one edge mode in the next (x, y) layer, and
alternating couplings along z). If the A-X-B and C-Y-D
building blocks pair up within the unit cells, I find the
array in a normal insulating state. If, however, the edge
modes pair up along z between neighboring unit cells,
a single-surface fractional quantum anomalous Hall (SS-
FQAH) phase with a single FQH layer on either the top
or bottom surface is realized. If, finally, one of the cou-
plings along y is strongest, I obtain a fractional quantum
anomalous Hall (FQAH) phase analogue to the above
QAH phase, which has one open FQH plane per (x, y)
layer of unit cells. This phase thus shows a Hall conduc-
tivity of σxy = ν e2/h per (x, y) layer of units cells. All
of these bulk gapped phases are conceptually related to
weak topological insulators. The individual FQH loops
and planes support gapped quasiparticles of fractional
charge and statistics, which are confined to their respec-
tive 2D subsystem. The phase diagram of the interacting
array is shown in Fig. 3, while Fig. 4 visualizes the bulk
gapped phases.
Most interesting is the fate of the Weyl semimetal.

In the non-interacting case, I argued that this phase
emerges when several competing tunnelings are of com-
parable strength. In a bosonized language, this translates
to competing sine-Gordon terms with similar prefactors.
In the interacting array, I find the same competition also
between the now more complicated sine-Gordon terms.
This analogy hints at the possible existence of an ex-
tended critical phase separating the bulk gapped frac-
tional phases. Some support for the generic existence of

critical phases in 3D comes from the superconducting ver-
sion of the non-interacting Hamiltonian in Eq. (1), which
has a gapless superconducting Weyl phase [52] similar to
3He-A [53]. Also spin liquids can exhibit a Weyl phase
[18].
While one option for a possible critical phase would

be a standard Weyl semimetal, I note that transitions
between the bulk gapped phases correspond to a rear-
rangement of only the edge states of the individual FQH
building blocks. Their bulk gaps in the X and Y wires,
however, never close. I thus speculate that the quan-
tum phase transitions of the interacting array, and the
possible gapless critical phase inherit some of the exotic
properties of FQH edge modes. A critical phase could for
instance be composed of fractionally charged fermionic
3D quasiparticles (somewhat related ideas are discussed
in Ref. [27]). The present analysis, however, cannot make
clear statements about the existence, and nature, of such
a critical phase since it is based on a language of com-
peting sine-Gordon terms. These are only well tractable
at strong coupling, and separately from each other.
Summary. In this work, the coupled-wire approach

has been adapted for the analysis of interacting topo-
logical phases in 3D. Studying first a non-interacting ar-
ray of wires, I found that its phase diagram includes a
normal insulating, a quantum anomalous Hall, a Weyl
semimetal, and a single-surface quantum anomalous Hall
phase. The surface on which this latter phase appears
can be controlled by the ratio of two tunnel couplings.
The coupled-wire language offers simple real space visu-
alizations of the bulk gapped phases in terms of closed
loops and open planes of 2D quantum Hall subsystems.
With electron-electron interactions, I found that the ar-
ray can be in analogous bulk gapped phases composed of
closed loops and open planes of fractional quantum Hall
states. Some of these phases have topologically protected
fractional edge states. The phase transitions of the array
are of exotic nature, and correspond to a rearrangement
of fractional quantum Hall edge modes. In analogy to
the non-interacting Weyl semimetal, I speculated about
a possible exotic critical phase, whose existence, and na-
ture, will be addressed in future work. Other interesting
directions include the use of chiral spin liquids, topolog-
ical superconductors, and states with a more complex
edge structure (such as Moore-Read states) as 2D build-
ing blocks, as well as the coupled-wire analysis of non-
Abelian 3D phases with string-like excitations. Experi-
mentally, the proposed array could be realized with cold
atoms, in which the necessary ingredients (fermions sub-
ject to spin-orbit coupling and magnetic field [54, 55],
and complex lattices with inequivalent sites [56], host-
ing even resonating valence-bond states [57]) have been
demonstrated.
This work has been supported by the Helmholtz asso-

ciation through VI-521, and the DFG through SFB 1143.
The author acknowledges stimulating discussions with E.
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FIG. 3: Phase diagram in the non-interacting (left), and
interacting (right) case with normal insulating (NI), (frac-
tional) quantum anomalous Hall ((F)QAH), Weyl semimetal
(WS), and single-surface (fractional) quantum anomalous
Hall (SS(F)QAH) phases. In a lattice model, the filling would
be 1/2 (1/6) in the non-interacting (interacting) case.

using ty± = ty1 ± ty2.

Phase diagram of the non-interacting model. Despite
being described by the same low-energy Hamiltonian as
stacked topological insulators, I find that the array of
coupled wires can enter a single-surface quantum anoma-
lous Hall (SSQAH) phase which is not present in Ref. [50].
This phase is realized for ty1 + ty2 < |tz1 − tz2| and
tz1 < tz2, and has a single quantum Hall layer formed
by the the topmost (for ty1 < ty2) or bottommost (for
ty1 > ty2) layer of wires, see below. Interestingly, the ra-
tio ty1/ty2 thus provides an experimental knob to choose
the surface on which the single quantum Hall layer, her-
alded by its gapless edge state, appears.

All other phases of the array are, however, similar to
Ref. [50]. For ty1 + ty2 < |tz1 − tz2| and tz1 > tz2, the
system is a normal insulator (NI). If |tz1 − tz2| ≤ ty1 +
ty2 ≤ tz1+tz2, the array of wires forms a Weyl semimetal
(WS) with two gapless Weyl nodes of opposite chirality
at k± = (0, 0,π/az ± kz0)T , where kz0 = arccos(1 −
[(ty1+ty2)2−(tz1−tz2)2]/2tz1tz2)/az. Surfaces then have
a Fermi arc between the projection of the Weyl nodes,
and show a finite Hall conductivity proportional to the
distance of the projected Weyl nodes. For ty1 + ty2 >
tz1 + tz2, finally, the system is in a quantum anomalous
Hall (QAH) phase, and exhibits a Hall conductivity of
σxy = e2/h per (x, y) layer of units cells on surfaces with
a normal in the (x, y) plane. The phase diagram of the
array of wires is shown in Fig. 3. I have checked that
the bulk phase transitions as obtained from the effective
low-energy model, and the presence of a Weyl semimetal
phase qualitatively agree with a tight-binding calculation
that includes all wires and tunnelings (also the subleading
tunnelings between wires X, C, and D, as well as Y, A,
and B).

Besides a blueprint for the constructivist engineering of
3D topological states, the coupled-wire construction also
provides a particularly simple visualization of the bulk
gapped phases based on their hierarchy of tunneling cou-
plings. Along the dominant tunnelings, the edge modes

FIG. 4: Coupled-wire visualization of the gapped phases for
ty1 < ty2. Thick solid lines depict the dominant couplings
along which closed loops and open planes of integer or frac-
tional quantum Hall layers form. Open planes are associated
with chiral edge modes illustrated by thick lines with arrows.

of the individual building blocks form closed loops and
open planes of quantum Hall layers, see Fig. 4. In the
NI phase, all building blocks connect along closed loops,
resulting in a full gap. The QAH phase, on the other
hand, consists of open quantum Hall planes alternating
with closed quantum Hall loops. Since each open plane
comes with a gapless edge mode, the Hall conductivity is
indeed σxy = e2/h per (x, y) layer of units cells. In the
SSQAH phase, all building blocks form trivial quantum
Hall loops, except for the ones on the topmost or bottom-
most layer (depending on the ratio ty1/ty2). These form
a single open quantum Hall plane. The Weyl semimetal
phase, finally, occurs if the competing tunnelings along
y and z are of similar strength. The system then enters
a critical phase with gapless states of definite momen-
tum (the states at the Weyl nodes), which has no simple
real-space picture.
Electron-electron interactions and fractionalization.

While the analysis of the non-interacting array identi-
fied the SSQAH phase as a novel 3D state, and gives
simple physical pictures of the bulk gapped phases, the
true power of coupled-wire constructions lies in the de-
scription of interacting systems. To tackle these, I lin-
earize the spectrum of each wire n around the Fermi
points at ±k1,2,3, and decompose the electron operators
into right (R) and left (L) moving modes as cn(x) =
eikFRnxRn(x)+eikFLnxLn(x), where the respective Fermi
momentum is kFrn, and r = R,L. For k1 = mk3 and
k2 = (m+1)k3 with positive integer m, momentum con-
servation forbids single-particle tunneling between coun-
terpropagating modes. The combination of electron-
electron interactions and tunneling, however, still gen-
erates momentum conserving correlated backscatterings
between neighboring wires. I find that the bulk of the
A-X-B (C-Y-D) building blocks can be gapped by the
correlated tunnelings
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of the individual building blocks form closed loops and
open planes of quantum Hall layers, see Fig. 4. In the
NI phase, all building blocks connect along closed loops,
resulting in a full gap. The QAH phase, on the other
hand, consists of open quantum Hall planes alternating
with closed quantum Hall loops. Since each open plane
comes with a gapless edge mode, the Hall conductivity is
indeed σxy = e2/h per (x, y) layer of units cells. In the
SSQAH phase, all building blocks form trivial quantum
Hall loops, except for the ones on the topmost or bottom-
most layer (depending on the ratio ty1/ty2). These form
a single open quantum Hall plane. The Weyl semimetal
phase, finally, occurs if the competing tunnelings along
y and z are of similar strength. The system then enters
a critical phase with gapless states of definite momen-
tum (the states at the Weyl nodes), which has no simple
real-space picture.
Electron-electron interactions and fractionalization.

While the analysis of the non-interacting array identi-
fied the SSQAH phase as a novel 3D state, and gives
simple physical pictures of the bulk gapped phases, the
true power of coupled-wire constructions lies in the de-
scription of interacting systems. To tackle these, I lin-
earize the spectrum of each wire n around the Fermi
points at ±k1,2,3, and decompose the electron operators
into right (R) and left (L) moving modes as cn(x) =
eikFRnxRn(x)+eikFLnxLn(x), where the respective Fermi
momentum is kFrn, and r = R,L. For k1 = mk3 and
k2 = (m+1)k3 with positive integer m, momentum con-
servation forbids single-particle tunneling between coun-
terpropagating modes. The combination of electron-
electron interactions and tunneling, however, still gen-
erates momentum conserving correlated backscatterings
between neighboring wires. I find that the bulk of the
A-X-B (C-Y-D) building blocks can be gapped by the
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Conclusions	



-  Non-interacting modes encompasses normal insulating phase, a 
quantum anomalous Hall, a Weyl semimetal and signle surface 
quantum anomalous Hall phase	



-  Phase transitions are controlled by ratio of tunnel couplings	



-  With e-e interactions there are analogous phases compose of 
closed loops and open planes of fractional quantum Hall states	



-  non-interacting Weyl semimetal probably evolves into an exotic 
critical phase	



-  all topological phase are related to weak topological insulators	
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