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Majorana Fermi Sea in Insulating SmB6 (arXiv:1507.03477)

Quantum Oscillations in the Kondo insulator SmB6

The Fermi surface resembles that of metallic LaB6

Anomalous temperature-dependence

of Quantum Oscillation amplitude

is a ”scalar Majorana Fermi liquid”SmB6

Coherent fluctuation of charge of a

Majorana fermion can cause Quantum Oscillations

neutral scalar

Unconventional Fermi surface in an insulating state (Science 349, 287 (2015))
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Kondo Insulators

SmB6, Ce3Bi4Pt3, CeFe4P12, CeRu4Sn3,...

Experimental signature: Change from metallic to insulating behavior
in the resistivity measurement with decreasing temperature.

H = 0T
H = 45T

B6Sm

What is the physical origin of this strange behaviour?
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Kondo Insulators

Theoretical description: Electrons moving on a lattice of spins.

Intuitively the spins act as very strong scatterer for the conduction
electrons. This causes the strong increase in the resistivity.
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Kondo Insulators

Why is SmB6 a Kondo Insulator?

Sm2+

(B6)2�

4f6 5d0 and

are almost degenerate

4f5 5d1

1) e− is in 5d has strong overlap with neighbors ⇒ Broad band

2) e− in 4f is strongly localized ⇒ Narrow band.

Transitions between 1) and 2) generate the Kondo coupling
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Kondo Insulators

What is the Hamiltonian for SmB6?

H =
∑

kσ εkσc
†
kσckσ + εf

∑
iσ f
†
iσfiσ + U

∑
i n

f
i↑n

f
i↓ +

∑
ikσ Vk(c†kσfiσ + H.c .)

Vk is the hybridization between f electrons and conduction electrons!

To second order in V a Schrieffer-Wolff transformation gives:

H =
∑

kσ εkσc
†
kσckσ + J

∑
i Si · si

Si represents the localized spin of the f electron at i and si is the
corresponding spin operator of the conduction electron.
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The De Haas-van Alphen effect

Metal The magnetization shows oscillations in
H

M
1

H

From these ”Quantum oscillations” we can extract two things:

1) The frequency F determines thes Fermi surface cross sectional area

F =
~

2⇡e
A (EF ))

A (EF ))
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The De Haas-van Alphen effect

Metal The magnetization shows oscillations in
H

M
1

H

From these ”Quantum oscillations” we can extract two things:

2) The quasiparticle effective mass m∗ is extracted from the
dependence of the oscillation amplitude R on temperature T

R(T ) =
2π2T
~ωc

sinh
(

2π2T
~ωc

) with ωc = eH
m∗c

This result is attributed to Lifshitz and Kosevich.
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Quantum oscillations in SmB6

Recent experiments suggest that quantum oscillations can not only be
observed in a metal but also in an insulator!

Science 349, 287 (2015)
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Quantum oscillations in SmB6

Experimental results:

1. Quantum oscillations in measurements of the magnetic torque
~τ = V ~M × ~B with V the sample volume.
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Quantum oscillations in SmB6

Experimental results:

2. The Fermi surface resembles the conduction electron Fermi surface
in metallic rare earth hexaborides (=”SmB6 without spin lattice”)

(A-C) High α frequncies reveal large prolate spheroids centered at X

(D-E) SmB6 Fermi surface when the Fermi energy is shifted from the

insulating gap into the conduction or valence band.
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Quantum oscillations in SmB6

Experimental results:

3. The temperature dependence of the quantum oscillations follows
Lifshitz-Kosevich for 2K < T < 25K with small effective mass
m∗ = 0.18me but deviates dramatically for T < 2K !
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Experimental puzzles

1. Why do we observe quantum oscillations in a bulk insulator?

2. What is the physical origin of the Fermi surface that occupies half
of the Brillouin zone?

3. Why does the temperature dependence of the quantum oscillation
amplitudes not follow the Lifshitz-Kosevich theory?

We will adress the first two questions in this journal club.
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Majorana representation of the Kondo lattice

Conduction electrons hopping on a bipartite cubic lattice at half filling
(µ = 0) and interacting with spins via on-site Kondo coupling:

H = −t∑σ

∑
<ij>(c†iσcjσ + H.c.) + J

∑
i ~si · ~Si

Goal:

1. J = 0 : The free spinful fermi sea can be rewritten as one spinless
scalar ”Majorana fermi sea” and three spinful ”Majorana fermi sea”.

2. J 6= 0 : The scalar Majorana fermi sea is unaffected by interactions.
The spectrum of vector Majorana fermions gets gapped out.
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Majorana representation of the Kondo lattice

Non-interacting case (J=0): H0 = −t∑σ

∑
<ij> c†iσcjσ + H.c.

Step 1: Transform operators on one of the two sublattices c†iσ → ic†iσ.

H0 → −it
∑

σ

∑
<ij>(c†iσcjσ − H.c .)

Step 2: Introduce scalar Majorana fermion c0i and vector Majorana
fermion ~ci = (cix , ciy , ciz) defined by c†i↑ = 1

2(cix + iciy ) and

c†i↓ = 1
2(ciz − ici0).

H0 = −it∑<ij> ci0cj0 + ~ci · ~cj
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Majorana representation of the Kondo lattice

Non-interacting case (J=0): H0 = −t∑σ

∑
<ij> c†iσcjσ + H.c.

Step 3: Diagonalize via Fourier transformation:

ciα = 1√
N

∑
1/2BZ (a~kαe

i~k·~Ri + a†~kα
e−i

~k·~Ri )

with operators a~kα, a
†
~kα
≡ a ~−kα with {a~kα, a

†
~k ′α
} = δ~k,~k ′ .

H0 =
∑

1/2BZ ε~k(a†~k0
a~k0 +~a†~k

~a~k) + E0

with ε~k = 2t
∑

~Ri
sin(~Ri · ~k) and E0 =

∑
ε~k<0 ε~k
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Majorana representation of the Kondo lattice

Non-interacting case (J=0): H0 = −t∑σ

∑
<ij> c†iσcjσ + H.c.

H0 =
∑
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a~k0 +~a†~k

~a~k) + E0

with ε~k = 2t
∑

~Ri
sin(~Ri · ~k) and E0 =

∑
ε~k<0 ε~k

Scalar and vector Majorana fermions form a ”Majorana Fermi sea”
characterized by

1. A zero energy Fermi surface in k-space.
2. Only particle-like positive energy excitations
3. Absence of hole-like excitations



images/comlab.pdf

Majorana representation of the Kondo lattice

Non-interacting case (J=0): H0 = −t∑σ

∑
<ij> c†iσcjσ + H.c.

H0 =
∑

1/2BZ ε~k(a†~k0
a~k0 +~a†~k

~a~k) + E0

with ε~k = 2t
∑

~Ri
sin(~Ri · ~k) and E0 =

∑
ε~k<0 ε~k

Scalar and vector Majorana fermions form a ”Majorana Fermi sea”
characterized by

1. A zero energy Fermi surface in k-space.
2. Only particle-like positive energy excitations
3. Absence of hole-like excitations



images/comlab.pdf

Majorana representation of the Kondo lattice

Non-interacting case (J=0): H0 = −t∑σ

∑
<ij> c†iσcjσ + H.c.

H0 =
∑

1/2BZ ε~k(a†~k0
a~k0 +~a†~k

~a~k) + E0

with ε~k = 2t
∑

~Ri
sin(~Ri · ~k) and E0 =

∑
ε~k<0 ε~k

Scalar and vector Majorana fermions form a ”Majorana Fermi sea”
characterized by

1. A zero energy Fermi surface in k-space.

2. Only particle-like positive energy excitations
3. Absence of hole-like excitations



images/comlab.pdf

Majorana representation of the Kondo lattice

Non-interacting case (J=0): H0 = −t∑σ

∑
<ij> c†iσcjσ + H.c.

H0 =
∑

1/2BZ ε~k(a†~k0
a~k0 +~a†~k

~a~k) + E0

with ε~k = 2t
∑

~Ri
sin(~Ri · ~k) and E0 =

∑
ε~k<0 ε~k

Scalar and vector Majorana fermions form a ”Majorana Fermi sea”
characterized by

1. A zero energy Fermi surface in k-space.
2. Only particle-like positive energy excitations

3. Absence of hole-like excitations



images/comlab.pdf

Majorana representation of the Kondo lattice

Non-interacting case (J=0): H0 = −t∑σ

∑
<ij> c†iσcjσ + H.c.

H0 =
∑

1/2BZ ε~k(a†~k0
a~k0 +~a†~k

~a~k) + E0

with ε~k = 2t
∑

~Ri
sin(~Ri · ~k) and E0 =

∑
ε~k<0 ε~k

Scalar and vector Majorana fermions form a ”Majorana Fermi sea”
characterized by

1. A zero energy Fermi surface in k-space.
2. Only particle-like positive energy excitations
3. Absence of hole-like excitations



images/comlab.pdf

Majorana representation of the Kondo lattice

Interacting case (J6= 0) : H=H0 + J
∑

i ~si · ~Si

Step 1: Rewrite the Kondo term in terms of Majorana fermions
~Si = −i(~ηi × ~ηi )/2.

H = H0 + J
2

∑
i

[
ci0~ci · (~ηi × ~ηi )− 1

2(~ci · ~ηi )2
]

+ const.

dim(HMajorana) = 23N/2 with 3 Majoranas at each of the N sites
dim(HMajorana)/dim(Hphys) = 2N/2

So there are 2N/2 extra gauge copies of the Hilbert space.



images/comlab.pdf

Majorana representation of the Kondo lattice

Interacting case (J6= 0) : H=H0 + J
∑

i ~si · ~Si

Step 1: Rewrite the Kondo term in terms of Majorana fermions
~Si = −i(~ηi × ~ηi )/2.

H = H0 + J
2

∑
i

[
ci0~ci · (~ηi × ~ηi )− 1

2(~ci · ~ηi )2
]

+ const.

dim(HMajorana) = 23N/2 with 3 Majoranas at each of the N sites
dim(HMajorana)/dim(Hphys) = 2N/2

So there are 2N/2 extra gauge copies of the Hilbert space.



images/comlab.pdf

Majorana representation of the Kondo lattice

Interacting case (J6= 0) : H=H0 + J
∑

i ~si · ~Si

Step 1: Rewrite the Kondo term in terms of Majorana fermions
~Si = −i(~ηi × ~ηi )/2.

H = H0 + J
2

∑
i

[
ci0~ci · (~ηi × ~ηi )− 1

2(~ci · ~ηi )2
]

+ const.

dim(HMajorana) = 23N/2 with 3 Majoranas at each of the N sites
dim(HMajorana)/dim(Hphys) = 2N/2

So there are 2N/2 extra gauge copies of the Hilbert space.



images/comlab.pdf

Majorana representation of the Kondo lattice

H = H0 + J
2

∑
i

[
ci0~ci · (~ηi × ~ηi )− 1

2(~ci · ~ηi )2
]

+ const.

Step 2: Mean field approximation

1. 〈ci0~ci 〉 = 0, 〈~Si 〉 = 0 (”non-magnetic solutions”)

2. (~ci · ~ηi )2 = (~ci · ~ηi − 〈~ci · ~ηi 〉)2 + 2(~ci · ~ηi )〈~ci · ~ηi 〉 − 〈~ci · ~ηi 〉2
≈ 2(~ci · ~ηi )〈~ci · ~ηi 〉 − 〈~ci · ~ηi 〉2

H = H0 − J0χ0
∑

i ~ci · ~ηi + const. , χ0 = 〈~ci · ~ηi 〉

Notice that ci0 drops out of the interaction!
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Notice that ci0 drops out of the interaction!



images/comlab.pdf

Majorana representation of the Kondo lattice

H = H0 + J
2

∑
i

[
ci0~ci · (~ηi × ~ηi )− 1

2(~ci · ~ηi )2
]

+ const.

Step 2: Mean field approximation

1. 〈ci0~ci 〉 = 0, 〈~Si 〉 = 0 (”non-magnetic solutions”)

2. (~ci · ~ηi )2 = (~ci · ~ηi − 〈~ci · ~ηi 〉)2 + 2(~ci · ~ηi )〈~ci · ~ηi 〉 − 〈~ci · ~ηi 〉2
≈ 2(~ci · ~ηi )〈~ci · ~ηi 〉 − 〈~ci · ~ηi 〉2

H = H0 − J0χ0
∑

i ~ci · ~ηi + const. , χ0 = 〈~ci · ~ηi 〉

Notice that ci0 drops out of the interaction!



images/comlab.pdf

Majorana representation of the Kondo lattice

H = H0 − J0χ0
∑

i ~ci · ~ηi + const.

Step 3: Diagonalization

H =
∑

1/2BZ ε~ka
†
~k0
a~k0+

∑
BZ ε~k

~A†~k0
~A~k0 , ε~k =

ε~k
2 ±
√( ε~k

2

)
+ (Jχ0)2

Scalar Majorana Fermi sea: Unaffected by Kondo interactions!

Vector Majorana Fermi sea: Gapped with neutral fermionic excitations
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Majorana representation of the Kondo lattice

H = −t∑σ

∑
<ij>(exp

(
ie
~c
∫ j
i
~A · ~d`

)
c†iσcjσ + H.c.) + J

∑
i ~si · ~Si

Result:

Majorana fermions can exhibit Quantum oscillations
- even though they are spinless and charge neutral.

Intuition:
Majorana fermions are superpositions of charged particles and holes.
So while their average charge vanishes there can be quantum
fluctuations that couple to magnetic fields!
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J=0: H0 = −t∑σ
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Step 1: Formally solve the problem:

H0 =
∑

σ

∑
α εαc

†
ασcασ + E0(~H)

with ~H = ~∇× ~A and E0(~H) = 2
∑

εα<0 εα.

Step 2: Introduce Majorana fermions c0i and ~ci = (cix , ciy , ciz).

Step 3: Express Majoranas as positive energy complex fermions:

H0 =
∑

εα>0 εα(a†α0aα0 +~a†α~aα) + 4
(
1
2

∑
εα<0 εα

)
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Majorana representation of the Kondo lattice

H0 =
∑

εα>0 εα(a†α0aα0 +~a†α~aα) + 4
(
1
2

∑
εα<0 εα

)

Results:

1) E (~H) changes with strength and direction of the magnetic field
due to non-spherical Fermi surfaces.
→ Quantum oscillations!

2) All Majoranas contribute equally by 1/4 to the Quantum
oscillations in the non-interacting case!

Even though they are charge neutral!
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Majorana representation of the Kondo lattice

Interacting case (J6= 0) : H=H0 + J
∑

i ~si · ~Si

Rewrite Kondo term with Majorans and perform mean field ansatz.
Diagonalize the mean field Hamiltonian. The result is:

H =
∑

εα>0 εαa
†
α0aα0 +

∑
all εα

εα~A
†
α0
~A~k0 + 1

4E0(~H) + 3
4Ev (~H, χ0)

with εα = εα
2 ±

√(
εα
2

)
+ (Jχ0)2

Vacuum energy Ev (~H, χ) of vector Majoranas has weak H-field
dependence. But the scalar Majoranas still contribute 1/4 of the free
fermi gas value at the same H-field. Hence one can still observe
quantum oscillations!
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