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Overview

Unconventional Fermi surface in an insulating state (Science 349, 287 (2015))
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¢ Quantum Oscillations in the Kondo insulator SmBg
e The Fermi surface resembles that of metallic LaBg

* Anomalous temperature-dependence
of Quantum Oscillation amplitude

Majorana Fermi Sea in Insulating SmBg (arXiv:1507.03477)
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e SmBg is a "scalar Majorana Fermi liquid”

e Coherent fluctuation of charge of a neutral scalar

Majorana fermion can cause Quantum Oscillations
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Kondo Insulators

SmBg, Ce3BigPts, CeFeyP12, CeRugSns, ...




Kondo Insulators

SmBg, Ce3BigPts, CeFeyP12, CeRugSns, ...

Experimental signature: Change from metallic to insulating behavior
in the resistivity measurement with decreasing temperature.
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Kondo Insulators

SmBg, Ce3BigPts, CeFeyP12, CeRugSns, ...

Experimental signature: Change from metallic to insulating behavior
in the resistivity measurement with decreasing temperature.

SmBg
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What is the physical origin of this strange behaviour?



Kondo Insulators

Theoretical description: Electrons moving on a lattice of spins.

N/ 3
N\ @’5:@

N L
N

B




Kondo Insulators

Theoretical description:
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Electrons moving on a lattice of spins.
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Intuitively the spins act as very strong scatterer for the conduction
electrons. This causes the strong increase in the resistivity.



Kondo Insulators

Why is SmBg a Kondo Insulator?
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Kondo Insulators

Why is SmBg a Kondo Insulator?
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is in bd has strong overlap with neighbors = Broad band




Kondo Insulators

Why is SmBg a Kondo Insulator?
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Kondo Insulators

Why is SmBg a Kondo Insulator?
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1) e™ is in 5d has strong overlap with neighbors = Broad band
2) e in 4f is strongly localized = Narrow band.

Transitions between 1) and 2) generate the Kondo coupling




Kondo Insulators

What is the Hamiltonian for SmBg?
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What is the Hamiltonian for SmBg?
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Kondo Insulators

What is the Hamiltonian for SmBg?

H =Yy ko Gy ko + € X0 i fig + U2 nfanf, + S Vidlel, fio + H.c.)

Vi is the hybridization between f electrons and conduction electrons!




Kondo Insulators

What is the Hamiltonian for SmBg?
H =Yg ek Glo o + €8 Xip Fip i + U iy + 35, VidGy fir + Hoc)

Vi is the hybridization between f electrons and conduction electrons!

To second order in V a Schrieffer-Wolff transformation gives:

H=> fkoclacka' +J> ;S-S




Kondo Insulators

What is the Hamiltonian for SmBg?
H = Ty ko Gl oo + € X Fi i + U el + ey Vil i + M)
Vi is the hybridization between f electrons and conduction electrons!

To second order in V a Schrieffer-Wolff transformation gives:

H=> fkoclacka' +J> ;S-S

S; represents the localized spin of the f electron at i and s; is the
corresponding spin operator of the conduction electron.
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The De Haas-van Alphen effect




The De Haas-van Alphen effect
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The De Haas-van Alphen effect

ta
1
Metal The magnetization M shows oscillations in Vi

From these " Quantum oscillations” we can extract two things:

1) The frequency F determines thes Fermi surface cross sectional area
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The De Haas-van Alphen effect

I
1
Metal The magnetization M shows oscillations in T

From these " Quantum oscillations” we can extract two things:

2) The quasiparticle effective mass m* is extracted from the
dependence of the oscillation amplitude R on temperature T

This result is attributed to Lifshitz and Kosevich.
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Quantum oscillations in SmBg

Recent experiments suggest that quantum oscillations can not only be
observed in a metal but also in an insulator!

HEAVY FERMIONS

Unconventional Fermi surface in an
insulating state

B. 8. Tan," Y.-T. Hsu," B. Zeng,” M. Ciomaga Hatnean,” N. Harrison,* Z. Zhu,*
M. Hartstein,” M. Kiourlappon,® A. Srivastava,” M. D. Johannes,” T. P. Murphy,*
J.-H. Park,” L. Balicas,” G. G. Lonzarich,’ G. Balakrishnan,” Suchitra E. Sebastian™

Insulators occur in more than one guise; a recent finding was a class of topological
insulators, which host a conducting surface juxtaposed with an insulating bulk. Here,

we report the observation of an unusual insulating state with an electrically insulating
bulk that yields bulk g oscillations with characteristics of an
unconventional Fermi liquid. We present quantum oscillation measurements of magnetic
torque in high-purity single crystals of the Kondo insulator SmBg, which reveal quantum
oscillation frequencies characteristic of a large three-dimensional conduction electron
Fermi surface similar to the metallic rare earth hexaborides such as PrBg and LaBs. The
quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly
at variance with conventional metallic behavior.

Science 349, 287 (2015)



Quantum oscillations in SmBg

Experimental results:

1. Quantum oscillations in measurements of the magnetic torque
7= VM x B with V the sample volume.
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Quantum oscillations in SmBg

Experimental results:

2. The Fermi surface resembles the conduction electron Fermi surface
in metallic rare earth hexaborides (="SmBg without spin lattice”)

A B c D o1
P SmBg | 3 PrB, & LaB,

e i ot o R g °
z T ——— N semes B R
R e A [T s e I =
2 et 5 " [010]
R bt = L.
5 ) B N 5
R e T N ~
E el S 100}
8 P o e o P !
2w PR s~ E N4\ ¢
2 : wlx 7
8o 7T S I y'v\
<] oy JK

0 30 &0 0 o 30 60 0 o 30 ) %0 | Ja s

foo1] ng [110]  [001] n) [110] [oo1] ] [110] (

o) F AN

(A-C) High « frequncies reveal large prolate spheroids centered at X
(D-E) SmBg Fermi surface when the Fermi energy is shifted from the
insulating gap into the conduction or valence band.




Quantum oscillations in SmBg

Experimental results:

3. The temperature dependence of the quantum oscillations follows
Lifshitz-Kosevich for 2K < T < 25K with small effective mass
m* = 0.18m, but deviates dramatically for T < 2K
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Experimental puzzles

1. Why do we observe quantum oscillations in a bulk insulator?
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1. Why do we observe quantum oscillations in a bulk insulator?

2. What is the physical origin of the Fermi surface that occupies half
of the Brillouin zone?




Experimental puzzles

1. Why do we observe quantum oscillations in a bulk insulator?

2. What is the physical origin of the Fermi surface that occupies half
of the Brillouin zone?

3. Why does the temperature dependence of the quantum oscillation
amplitudes not follow the Lifshitz-Kosevich theory?

We will adress the first two questions in this journal club.
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Majorana representation of the Kondo lattice

Conduction electrons hopping on a bipartite cubic lattice at half filling
(1 = 0) and interacting with spins via on-site Kondo coupling:

—

H = _tZJ Z<ij>(CI]L0'CJ'O' + HC) + JZIE, ’ 5’




Majorana representation of the Kondo lattice

Conduction electrons hopping on a bipartite cubic lattice at half filling
(1 = 0) and interacting with spins via on-site Kondo coupling:

H=—t3, Y (o +He) + 35S,

Goal:

1. J=0: The free spinful fermi sea can be rewritten as one spinless
scalar " Majorana fermi sea” and three spinful "Majorana fermi sea”.

2. J % 0: The scalar Majorana fermi sea is unaffected by interactions.
The spectrum of vector Majorana fermions gets gapped out.



Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo +H.c.




Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo +H.c.
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Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo + H.c.
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Step 1: Transform operators on one of the two sublattices c; — ic;_ .

Ho — —it 3, > s (chcjo — H.c.)

Step 2: Introduce scalar Majorana fermion ¢p; and vector Majorana
fermion ¢ = (cix, Cjy, Ciz) defined by CI)} = %(c,-x + icjy) and

CI-Ti = %(c,-Z — icip).

Ho = —it > - cioGjo + G - G



Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo +H.c.




Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo + H.c.

Step 3: Diagonalize via Fourier transformation:

1 L eik R gt o—ikR;
Cio = N >128z(ag € t+a; e )
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with {a; ,a L } = O -

with operators az_,




Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo + H.c.

Step 3: Diagonalize via Fourier transformation:
ik~R,‘ _|_ aT e—ik-R,‘)

1
Cia = N 21/232(3;;‘(16

I =a- with {ag,. 2 L } =0z -

with operators ag | ya: e

— —

with ez =2t 375 sin(R; - k) and Eo =37 g€z



Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo + H.c.

Ho = 31087 €7@k, a5 + 3137) + Eo

with e =2t 35 sin(R; - k) and Ey = 20 R




Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo + H.c.

Ho = 21/232 6;(3}03,‘(‘0 + 5}3“) + Eo

with e =2t 35 sin(R; - k) and Ey = 20 R

Scalar and vector Majorana fermions form a "Majorana Fermi sea”
characterized by




Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo + H.c.
Ho = 31087 €7@k, a5 + 3137) + Eo
with € = 2t Zk‘i sin(ﬁ,- . E) and Eg = Ze;<0 €;

Scalar and vector Majorana fermions form a "Majorana Fermi sea”
characterized by

1. A zero energy Fermi surface in k-space.




Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo + H.c.

Ho = 21/232 6;(3}03,‘(‘0 + 5}3“) + Eo

with e =2t 35 sin(R; - k) and Ey = 20 R

Scalar and vector Majorana fermions form a "Majorana Fermi sea”
characterized by

1. A zero energy Fermi surface in k-space.
2. Only particle-like positive energy excitations



Majorana representation of the Kondo lattice

Non-interacting case (J=0): Ho = —t>_, > i~ C,-T(,Cjo + H.c.

Ho =>1/087 EE(aJ/%anO + 31”5*) +Eo
with e =2t 35 sin(R; - k) and Ey = 20 R

Scalar and vector Majorana fermions form a "Majorana Fermi sea”
characterized by

1. A zero energy Fermi surface in k-space.
2. Only particle-like positive energy excitations
3. Absence of hole-like excitations



Majorana representation of the Kondo lattice

Interacting case (J# 0) : H=Ho+ J ), 5 - S;




Majorana representation of the Kondo lattice

Interacting case (J# 0) : H=Ho+ J ), 5 - S;

Step 1: Rewrite the Kondo term in terms of Majorana fermions
Si = —i(m; x 77)/2.

H = Ho+ 3 [cio€ - (17 x ;) — 3(& - 17)?] + const.




Majorana representation of the Kondo lattice

Interacting case (J# 0) : H=Ho+ J ), 5 - S;

Step 1: Rewrite the Kondo term in terms of Majorana fermions
Si = —i(m; x 77)/2.

H = Ho+ 3 [cio€ - (17 x ;) — 3(& - 17)?] + const.
dim(H pajorana) = 23N/2 \ith 3 Majoranas at each of the N sites

dim(HMajorana)/dim(HPhys) = 2N/2

So there are 2V/2 extra gauge copies of the Hilbert space.



Majorana representation of the Kondo lattice

H = Ho+ 33 [cio€i - (1 x 1) — (& - 1;)?] + const.




Majorana representation of the Kondo lattice

H = Ho+ 33 [cio€i - (1 x 1) — (& - 1;)?] + const.

Step 2: Mean field approximation




Majorana representation of the Kondo lattice

H = Ho+ 33 [cio€i - (1 x 1) — (& - 1;)?] + const.

Step 2: Mean field approximation

—

1. (cio¢i) =0, (Si) = 0 ("non-magnetic solutions")




Majorana representation of the Kondo lattice

H = Ho+ 33 [cio€i - (1 x 1) — (& - 1;)?] + const.

Step 2: Mean field approximation

1. {(cioGi) =0, <§> 0 (" non-magnetic solutions”)

(G - — (G n,>)+2(c, MG - 1i) — (¢ i)
2(¢i - )< i) — (¢ i)

2. (& -17})>2

Q




Majorana representation of the Kondo lattice

H = Ho+ 33 [cio€i - (1 x 1) — (& - 1;)?] + const.

Step 2: Mean field approximation

1. {(cioGi) =0, <§> 0 (" non-magnetic solutions”)

(G - — (G n,>)+2(c, MG - 1i) — (¢ i)
2(¢i - )< i) — (¢ i)

2. (& -17})>2

Q




Majorana representation of the Kondo lattice

H = Ho+ 33 [cio€i - (1 x 1) — (& - 1;)?] + const.

Step 2: Mean field approximation

2. (5,-77,-)2:(7-7—(5, ) + 26 - ) (G - i) — (G - m)?
%2(5;77;«377» <I 771>
H = Ho — Joxo_;Ci - ni +const. ,  xo = (G -7)

Notice that cjyp drops out of the interaction!



Majorana representation of the Kondo lattice

H = Ho — Joxo >_; G; - 1; + const.




Majorana representation of the Kondo lattice

H = Ho — Joxo >_; G; - 1; + const.

Step 3: Diagonalization




Majorana representation of the Kondo lattice

H = Ho — Joxo >_; G; - 1; + const.

Step 3: Diagonalization

€

— T AT A _ % K
H=231/82 61?‘3;03/?0"_252 AL AR o k=2 T (%) + (Uxo)?

Scalar Majorana Fermi sea: Unaffected by Kondo interactions!

Vector Majorana Fermi sea: Gapped with neutral fermionic excitations
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Majorana representation of the Kondo lattice at finite H-field



Majorana representation of the Kondo lattice

H=—t>,> _j-(exp (ﬁ fljﬁ . d_@) c,.Tch(7 +Hc)+J> ;5 S;




Majorana representation of the Kondo lattice

H=—t>,> _j-(exp (ﬁ fljﬁ . d_@) C,-TUCJ'O +Hc)+J> ;5 S;

Result:

Majorana fermions can exhibit Quantum oscillations
- even though they are spinless and charge neutral.

Intuition:

Majorana fermions are superpositions of charged particles and holes.
So while their average charge vanishes there can be quantum
fluctuations that couple to magnetic fields!



Majorana representation of the Kondo lattice

J=0: HO = —t ZU Z<ij> exp (ﬁ flj,z . d?) CIT(rCJ'U +H.c.




Majorana representation of the Kondo lattice

J=0: HO = —t ZU Z<ij> exp (ﬁ flj,z . d?) CIT(rCJ'U +H.c.

Step 1: Formally solve the problem:
Ho =32, 3 €aChocas + Eo(H)

with H =V x A and E(H) =23, _g¢a-




Majorana representation of the Kondo lattice

J=0: Ho = =32, 3 jjs exp (ﬁ JIA. d?) ¢l o + Hec.
Step 1: Formally solve the problem:
Ho = Zo’ Za Eacgzacaa + EO(H)

with H =V x A and E(H) =23, _g¢a-

Step 2: Introduce Majorana fermions co; and & = (cix, Ciy, Ciz)-




Majorana representation of the Kondo lattice

J=0: Hp=—-ty_, Z<ij> exp (ﬁ fijﬁ . d?) c;f(rcjg +H.c.
Step 1: Formally solve the problem:
Ho = 3, 3 €aChoCao + Eo(H)
with H =V x A and E(H) =23, _g¢a-

Step 2: Introduce Majorana fermions co; and & = (cix, Ciy, Ciz)-

Step 3: Express Majoranas as positive energy complex fermions:

Ho = Zea>0 601(31403040 + 3:&30) +4 (% Zsa<0 601)



Majorana representation of the Kondo lattice

Ho =3¢ <o Ea(aLoaaO +3hda) +4 (3 > en<0€a)




Majorana representation of the Kondo lattice

Ho =3¢ <o Ea(aLoaaO +3hda) +4 (3 > en<0€a)

Results:

1) E(H) changes with strength and direction of the magnetic field
due to non-spherical Fermi surfaces.
— Quantum oscillations!




Majorana representation of the Kondo lattice

Ho =3¢ <o Ea(aLoaaO +3hda) +4 (3 c.<0€a)
Results:

1) E(H) changes with strength and direction of the magnetic field
due to non-spherical Fermi surfaces.
— Quantum oscillations!

2) All Majoranas contribute equally by 1/4 to the Quantum
oscillations in the non-interacting case!

Even though they are charge neutral!



Majorana representation of the Kondo lattice

Interacting case (J# 0) : H=Ho+ J ), 5 - S;




Majorana representation of the Kondo lattice

—

Interacting case (J# 0) : H=Ho + J > .5 - S

Rewrite Kondo term with Majorans and perform mean field ansatz.
Diagonalize the mean field Hamiltonian. The result is:




Majorana representation of the Kondo lattice

-

Interacting case (J# 0) : H=Ho + J ;5 - S

Rewrite Kondo term with Majorans and perform mean field ansatz.
Diagonalize the mean field Hamiltonian. The result is:

H = Eea>0 6a"”LoaaO + D i €a EaALoAEo + %EO(H) + %Ev(HaXO)

with 64 = % £1/(%) + (Ix0)?




Majorana representation of the Kondo lattice

-

Interacting case (J# 0) : H=Ho + J ;5 - S

Rewrite Kondo term with Majorans and perform mean field ansatz.
Diagonalize the mean field Hamiltonian. The result is:

H = Eea>0 6a"”LoaaO + D i €a EaALoAEo + %EO(H) + %Ev(HaXO)

with 64 = % £1/(%) + (Ix0)?

Vacuum energy Ev(ﬁ,x) of vector Majoranas has weak H-field
dependence. But the scalar Majoranas still contribute 1/4 of the free
fermi gas value at the same H-field. Hence one can still observe
quantum oscillations!
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