Majorana Fermi Sea in Insulating SmB₆ by Ganapathy Baskaran (arXiv:1507.03477)

Constantin Schrade

University of Basel

Overview

Unconventional Fermi surface in an insulating state (Science 349, 287 (2015))

- + Quantum Oscillations in the Kondo insulator ${\rm SmB}_6$
- The Fermi surface resembles that of metallic LaB_6
- Anomalous temperature-dependence of Quantum Oscillation amplitude

Majorana Fermi Sea in Insulating SmB_6 (arXiv:1507.03477)

$$c_{i\uparrow}^{\dagger} = \frac{1}{2}(c_{ix} + ic_{iy})$$
$$c_{i\downarrow}^{\dagger} = \frac{1}{2}(c_{iz} - ic_{i0})$$

- SmB $_6$ is a "scalar Majorana Fermi liquid"
- Coherent fluctuation of charge of a neutral scalar Majorana fermion can cause Quantum Oscillations

Outline

Review Kondo Insulators The De Haas-van Alphen effect

Experiments

Quantum Oscillations in SmB₆

Theory

Majorana representation of the Kondo lattice at zero H-field Majorana representation of the Kondo lattice at finite H-field

Outline

Review Kondo Insulators The De Haas-van Alphen effect

Experiments Quantum Oscillations in SmB₆

Theory

Majorana representation of the Kondo lattice at zero H-field Majorana representation of the Kondo lattice at finite H-field

*SmB*₆, *Ce*₃*Bi*₄*Pt*₃, *CeFe*₄*P*₁₂, *CeRu*₄*Sn*₃,...

*SmB*₆, *Ce*₃*Bi*₄*Pt*₃, *CeFe*₄*P*₁₂, *CeRu*₄*Sn*₃,...

Experimental signature: Change from metallic to insulating behavior in the resistivity measurement with decreasing temperature.

SmB₆, Ce₃Bi₄Pt₃, CeFe₄P₁₂, CeRu₄Sn₃,...

Experimental signature: Change from metallic to insulating behavior in the resistivity measurement with decreasing temperature.

What is the physical origin of this strange behaviour?

Theoretical description: Electrons moving on a lattice of spins.

Theoretical description: Electrons moving on a lattice of spins.

Intuitively the spins act as very strong scatterer for the conduction electrons. This causes the strong increase in the resistivity.

Why is SmB₆ a Kondo Insulator?

Why is SmB₆ a Kondo Insulator?

1) e^- is in 5d has strong overlap with neighbors \Rightarrow Broad band

Why is SmB₆ a Kondo Insulator?

1) e^- is in 5d has strong overlap with neighbors \Rightarrow Broad band 2) e^- in 4f is strongly localized \Rightarrow Narrow band.

Why is SmB₆ a Kondo Insulator?

1) e^- is in 5d has strong overlap with neighbors \Rightarrow Broad band 2) e^- in 4f is strongly localized \Rightarrow Narrow band.

Transitions between 1) and 2) generate the Kondo coupling

What is the Hamiltonian for SmB_6 ?

What is the Hamiltonian for SmB_6 ?

 $H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}\sigma} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \epsilon_f \sum_{i\sigma} f^{\dagger}_{i\sigma} f_{i\sigma} + U \sum_i n^f_{i\uparrow} n^f_{i\downarrow} + \sum_{i\mathbf{k}\sigma} V_{\mathbf{k}} (c^{\dagger}_{\mathbf{k}\sigma} f_{i\sigma} + H.c.)$

What is the Hamiltonian for SmB_6 ?

 $H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}\sigma} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \epsilon_f \sum_{i\sigma} f^{\dagger}_{i\sigma} f_{i\sigma} + U \sum_i n^f_{i\uparrow} n^f_{i\downarrow} + \sum_{i\mathbf{k}\sigma} V_{\mathbf{k}}(c^{\dagger}_{\mathbf{k}\sigma} f_{i\sigma} + H.c.)$

 $V_{\mathbf{k}}$ is the hybridization between f electrons and conduction electrons!

What is the Hamiltonian for SmB_6 ?

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}\sigma} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \epsilon_f \sum_{i\sigma} f^{\dagger}_{i\sigma} f_{i\sigma} + U \sum_i n^f_{i\uparrow} n^f_{i\downarrow} + \sum_{i\mathbf{k}\sigma} V_{\mathbf{k}} (c^{\dagger}_{\mathbf{k}\sigma} f_{i\sigma} + H.c.)$$

 $V_{\mathbf{k}}$ is the hybridization between f electrons and conduction electrons!

To second order in V a Schrieffer-Wolff transformation gives:

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + J \sum_{i} S_{i} \cdot s_{i}$$

What is the Hamiltonian for SmB₆?

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}\sigma} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \epsilon_f \sum_{i\sigma} f^{\dagger}_{i\sigma} f_{i\sigma} + U \sum_i n^f_{i\uparrow} n^f_{i\downarrow} + \sum_{i\mathbf{k}\sigma} V_{\mathbf{k}} (c^{\dagger}_{\mathbf{k}\sigma} f_{i\sigma} + H.c.)$$

 $V_{\mathbf{k}}$ is the hybridization between f electrons and conduction electrons!

To second order in V a Schrieffer-Wolff transformation gives:

$$H = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + J \sum_{i} S_{i} \cdot s_{i}$$

 S_i represents the localized spin of the f electron at *i* and s_i is the corresponding spin operator of the conduction electron.

Outline

Review Kondo Insulators The De Haas-van Alphen effect

Experiments Quantum Oscillations in SmB₆

Theory

Majorana representation of the Kondo lattice at zero H-field Majorana representation of the Kondo lattice at finite H-field

From these "Quantum oscillations" we can extract two things: 1) The frequency F determines thes Fermi surface cross sectional area

From these "Quantum oscillations" we can extract two things:
2) The quasiparticle effective mass m* is extracted from the dependence of the oscillation amplitude R on temperature T

$$R(T) = rac{2\pi^2 T}{\hbar\omega_c}$$
 with $\omega_c = rac{eH}{m^*c}$

This result is attributed to Lifshitz and Kosevich.

Outline

Review Kondo Insulators The De Haas-van Alphen effect

Experiments Quantum Oscillations in SmB₆

Theory

Majorana representation of the Kondo lattice at zero H-field Majorana representation of the Kondo lattice at finite H-field

Recent experiments suggest that quantum oscillations can not only be observed in a metal but also in an insulator!

HEAVY FERMIONS

Unconventional Fermi surface in an insulating state

B. S. Tan,¹ Y.-T. Hsu,¹ B. Zeng,² M. Giomaga Hatnean,³ N. Harrison,⁴ Z. Zhu,⁴ M. Hartstein,¹ M. Kiourkappou,¹ A. Srivastava,¹ M. D. Johannes,⁶ T. P. Murphy,² J.-H. Park,² L. Balicas,² G. G. Lonzarich,¹ G. Balakrishnan,³ Suchitra E. Sebastian¹

Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface jurtaposed with an insulating bulk. Here, we report the observation of an unusual **insulating state** with an electrically insulating bulk that simultaneously yields bulk quantum oscillation swith characteristics of an <u>unconventional Fermi liquid</u>. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB₆, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB₆ and LaB₆. The quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

Science 349, 287 (2015)

Experimental results:

1. Quantum oscillations in measurements of the magnetic torque $\vec{\tau} = V \vec{M} \times \vec{B}$ with V the sample volume.

Experimental results:

2. The Fermi surface resembles the conduction electron Fermi surface in metallic rare earth hexaborides (=" SmB_6 without spin lattice")

(A-C) High α frequecies reveal large prolate spheroids centered at X (D-E) SmB₆ Fermi surface when the Fermi energy is shifted from the insulating gap into the conduction or valence band.

Experimental results:

3. The temperature dependence of the quantum oscillations follows Lifshitz-Kosevich for 2K < T < 25K with small effective mass $m^* = 0.18m_e$ but deviates dramatically for T < 2K!

1. Why do we observe quantum oscillations in a bulk insulator?

- 1. Why do we observe quantum oscillations in a bulk insulator?
- 2. What is the physical origin of the Fermi surface that occupies half of the Brillouin zone?

- 1. Why do we observe quantum oscillations in a bulk insulator?
- 2. What is the physical origin of the Fermi surface that occupies half of the Brillouin zone?
- 3. Why does the temperature dependence of the quantum oscillation amplitudes not follow the Lifshitz-Kosevich theory?

We will adress the first two questions in this journal club.

Outline

Review

Kondo Insulators The De Haas-van Alphen effect

Experiments Quantum Oscillations in SmE

Theory

Majorana representation of the Kondo lattice at zero H-field Majorana representation of the Kondo lattice at finite H-field

Conduction electrons hopping on a bipartite cubic lattice at half filling $(\mu = 0)$ and interacting with spins via on-site Kondo coupling:

$$H = -t \sum_{\sigma} \sum_{<\mathrm{ij}>} (c^{\dagger}_{i\sigma} c_{j\sigma} + \mathrm{H.c.}) + J \sum_{i} ec{s}_{i} \cdot ec{S}_{i}$$

Conduction electrons hopping on a bipartite cubic lattice at half filling $(\mu = 0)$ and interacting with spins via on-site Kondo coupling:

$${\cal H} = -t\sum_{\sigma}\sum_{<{
m ij}>}(c^{\dagger}_{i\sigma}c_{j\sigma}+{
m H.c.})+J\sum_{i}ec{s}_{i}\cdotec{s}_{i}$$

Goal:

1. J = 0: The free spinful fermi sea can be rewritten as one spinless scalar "Majorana fermi sea" and three spinful "Majorana fermi sea".

2. $J \neq 0$: The scalar Majorana fermi sea is unaffected by interactions. The spectrum of vector Majorana fermions gets gapped out.

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + H.c.$

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}$

Step 1: Transform operators on one of the two sublattices $c_{i\sigma}^{\dagger} \rightarrow i c_{i\sigma}^{\dagger}$.

$$H_0
ightarrow -it \sum_{\sigma} \sum_{<\mathrm{ij}>} (c^{\dagger}_{i\sigma}c_{j\sigma} - H.c.)$$

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}$

Step 1: Transform operators on one of the two sublattices $c_{i\sigma}^{\dagger} \rightarrow i c_{i\sigma}^{\dagger}$.

$$H_0
ightarrow -it \sum_{\sigma} \sum_{<\mathrm{ij}>} (c^{\dagger}_{i\sigma}c_{j\sigma} - H.c.)$$

Step 2: Introduce scalar Majorana fermion c_{0i} and vector Majorana fermion $\vec{c_i} = (c_{ix}, c_{iy}, c_{iz})$ defined by $c_{i\uparrow}^{\dagger} = \frac{1}{2}(c_{ix} + ic_{iy})$ and $c_{i\downarrow}^{\dagger} = \frac{1}{2}(c_{iz} - ic_{i0})$.

 $H_0 = -it \sum_{\langle ij \rangle} c_{i0} c_{j0} + \vec{c}_i \cdot \vec{c}_j$

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + H.c.$

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}$

Step 3: Diagonalize via Fourier transformation:

$$c_{i\alpha} = \frac{1}{\sqrt{N}} \sum_{1/2BZ} (a_{\vec{k}\alpha} e^{i\vec{k}\cdot\vec{R}_i} + a_{\vec{k}\alpha}^{\dagger} e^{-i\vec{k}\cdot\vec{R}_i})$$

with operators $a_{\vec{k}\alpha}, a_{\vec{k}\alpha}^{\dagger} \equiv a_{-\vec{k}\alpha}$ with $\{a_{\vec{k}\alpha}, a_{\vec{k}'\alpha}^{\dagger}\} = \delta_{\vec{k},\vec{k}'}.$

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}$

Step 3: Diagonalize via Fourier transformation:

$$c_{i\alpha} = \frac{1}{\sqrt{N}} \sum_{1/2BZ} (a_{\vec{k}\alpha} e^{i\vec{k}\cdot\vec{R}_i} + a_{\vec{k}\alpha}^{\dagger} e^{-i\vec{k}\cdot\vec{R}_i})$$
with operators $a_{\vec{k}\alpha}, a_{\vec{k}\alpha}^{\dagger} \equiv a_{-\vec{k}\alpha}$ with $\{a_{\vec{k}\alpha}, a_{\vec{k}'\alpha}^{\dagger}\} = \delta_{\vec{k},\vec{k}'}.$

$$H_0 = \sum_{1/2BZ} \epsilon_{\vec{k}} (a_{\vec{k}0}^{\dagger} a_{\vec{k}0} + \vec{a}_{\vec{k}}^{\dagger} \vec{a}_{\vec{k}}) + E_0$$

with $\epsilon_{\vec{k}} = 2t \sum_{\vec{R}_i} \sin(\vec{R}_i \cdot \vec{k})$ and $E_0 = \sum_{\epsilon_{\vec{k}} < 0} \epsilon_{\vec{k}}$

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + H.c.$

$$\begin{aligned} H_0 &= \sum_{1/2BZ} \epsilon_{\vec{k}} (a_{\vec{k}0}^{\dagger} a_{\vec{k}0} + \vec{a}_{\vec{k}}^{\dagger} \vec{a}_{\vec{k}}) + E_0 \end{aligned}$$
with $\epsilon_{\vec{k}} &= 2t \sum_{\vec{R}_i} \sin(\vec{R}_i \cdot \vec{k})$ and $E_0 = \sum_{\epsilon_{\vec{k}} < 0} \epsilon_{\vec{k}}$

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}$

$$H_0 = \sum_{1/2BZ} \epsilon_{\vec{k}} (a^{\dagger}_{\vec{k}0} a_{\vec{k}0} + \vec{a}^{\dagger}_{\vec{k}} \vec{a}_{\vec{k}}) + E_0$$

with $\epsilon_{\vec{k}} = 2t \sum_{\vec{R}_i} \sin(\vec{R}_i \cdot \vec{k})$ and $E_0 = \sum_{\epsilon_{\vec{k}} < 0} \epsilon_{\vec{k}}$

Scalar and vector Majorana fermions form a "Majorana Fermi sea" characterized by

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}$

$$egin{aligned} \mathcal{H}_0 &= \sum_{1/2BZ} \epsilon_{ec{k}} (a^{\dagger}_{ec{k}0} a_{ec{k}0} + ec{a}^{\dagger}_{ec{k}} ec{a}_{ec{k}}) + \mathcal{E}_0 \end{aligned}$$
with $\epsilon_{ec{k}} &= 2t \sum_{ec{R}_i} \sin(ec{R}_i \cdot ec{k})$ and $\mathcal{E}_0 &= \sum_{\epsilon_{ec{k}} < 0} \epsilon_{ec{k}} \end{aligned}$

Scalar and vector Majorana fermions form a "Majorana Fermi sea" characterized by

1. A zero energy Fermi surface in k-space.

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + H.c.$

$$\begin{aligned} H_0 &= \sum_{1/2BZ} \epsilon_{\vec{k}} (a_{\vec{k}0}^{\dagger} a_{\vec{k}0} + \vec{a}_{\vec{k}}^{\dagger} \vec{a}_{\vec{k}}) + E_0 \end{aligned}$$
with $\epsilon_{\vec{k}} &= 2t \sum_{\vec{R}_i} \sin(\vec{R}_i \cdot \vec{k})$ and $E_0 = \sum_{\epsilon_{\vec{k}} < 0} \epsilon_{\vec{k}}$

Scalar and vector Majorana fermions form a "Majorana Fermi sea" characterized by

- 1. A zero energy Fermi surface in k-space.
- 2. Only particle-like positive energy excitations

Non-interacting case (J=0): $H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} c_{i\sigma}^{\dagger} c_{j\sigma} + H.c.$

$$H_0 = \sum_{1/2BZ} \epsilon_{\vec{k}} (a^{\dagger}_{\vec{k}0} a_{\vec{k}0} + \vec{a}^{\dagger}_{\vec{k}} \vec{a}_{\vec{k}}) + E_0$$
with $\epsilon_{\vec{k}} = 2t \sum_{\vec{R}_i} \sin(\vec{R}_i \cdot \vec{k})$ and $E_0 = \sum_{\epsilon_{\vec{k}} < 0} \epsilon_{\vec{k}}$

Scalar and vector Majorana fermions form a "Majorana Fermi sea" characterized by

- 1. A zero energy Fermi surface in k-space.
- 2. Only particle-like positive energy excitations
- 3. Absence of hole-like excitations

Interacting case $(J \neq 0)$: $H = H_0 + J \sum_i \vec{s}_i \cdot \vec{S}_i$

Interacting case $(J \neq 0)$: $H = H_0 + J \sum_i \vec{s}_i \cdot \vec{S}_i$

Step 1: Rewrite the Kondo term in terms of Majorana fermions $\vec{S}_i = -i(\vec{\eta}_i \times \vec{\eta}_i)/2.$

 $H = H_0 + \frac{J}{2} \sum_i \left[c_{i0} \vec{c_i} \cdot (\vec{\eta_i} \times \vec{\eta_i}) - \frac{1}{2} (\vec{c_i} \cdot \vec{\eta_i})^2 \right] + \text{const.}$

Interacting case $(J \neq 0)$: $H = H_0 + J \sum_i \vec{s}_i \cdot \vec{S}_i$

Step 1: Rewrite the Kondo term in terms of Majorana fermions $\vec{S}_i = -i(\vec{\eta}_i \times \vec{\eta}_i)/2.$

 $H = H_0 + \frac{J}{2} \sum_i \left[c_{i0} \vec{c_i} \cdot (\vec{\eta_i} \times \vec{\eta_i}) - \frac{1}{2} (\vec{c_i} \cdot \vec{\eta_i})^2 \right] + \text{const.}$

 $\dim(\mathcal{H}_{Majorana}) = 2^{3N/2}$ with 3 Majoranas at each of the N sites $\dim(\mathcal{H}_{Majorana})/\dim(\mathcal{H}_{phys}) = 2^{N/2}$

So there are $2^{N/2}$ extra gauge copies of the Hilbert space.

 $H = H_0 + \frac{J}{2} \sum_i \left[c_{i0} \vec{c_i} \cdot (\vec{\eta_i} \times \vec{\eta_i}) - \frac{1}{2} (\vec{c_i} \cdot \vec{\eta_i})^2 \right] + \text{const.}$

 $H = H_0 + \frac{J}{2} \sum_i \left[c_{i0} \vec{c_i} \cdot (\vec{\eta_i} \times \vec{\eta_i}) - \frac{1}{2} (\vec{c_i} \cdot \vec{\eta_i})^2 \right] + \text{const.}$

Step 2: Mean field approximation

 $H = H_0 + \frac{J}{2} \sum_i \left[c_{i0} \vec{c_i} \cdot (\vec{\eta_i} \times \vec{\eta_i}) - \frac{1}{2} (\vec{c_i} \cdot \vec{\eta_i})^2 \right] + \text{const.}$

Step 2: Mean field approximation

1. $\langle c_{i0}\vec{c_i}\rangle = 0$, $\langle \vec{S_i}\rangle = 0$ ("non-magnetic solutions")

 $H = H_0 + \frac{J}{2} \sum_i \left[c_{i0} \vec{c_i} \cdot (\vec{\eta_i} \times \vec{\eta_i}) - \frac{1}{2} (\vec{c_i} \cdot \vec{\eta_i})^2 \right] + \text{const.}$

Step 2: Mean field approximation

1.
$$\langle c_{i0}\vec{c_i} \rangle = 0$$
, $\langle \vec{S_i} \rangle = 0$ ("non-magnetic solutions")
2. $(\vec{c_i} \cdot \vec{\eta_i})^2 = (\vec{c_i} \cdot \vec{\eta_i} - \langle \vec{c_i} \cdot \vec{\eta_i} \rangle)^2 + 2(\vec{c_i} \cdot \vec{\eta_i}) \langle \vec{c_i} \cdot \vec{\eta_i} \rangle - \langle \vec{c_i} \cdot \vec{\eta_i} \rangle^2$
 $\approx 2(\vec{c_i} \cdot \vec{\eta_i}) \langle \vec{c_i} \cdot \vec{\eta_i} \rangle - \langle \vec{c_i} \cdot \vec{\eta_i} \rangle^2$

 $H = H_0 + \frac{J}{2} \sum_i \left[c_{i0} \vec{c_i} \cdot (\vec{\eta_i} \times \vec{\eta_i}) - \frac{1}{2} (\vec{c_i} \cdot \vec{\eta_i})^2 \right] + \text{const.}$

Step 2: Mean field approximation

1.
$$\langle c_{i0}\vec{c_i} \rangle = 0$$
, $\langle \vec{S_i} \rangle = 0$ ("non-magnetic solutions")
2. $(\vec{c_i} \cdot \vec{\eta_i})^2 = (\vec{c_i} \cdot \vec{\eta_i} - \langle \vec{c_i} \cdot \vec{\eta_i} \rangle)^2 + 2(\vec{c_i} \cdot \vec{\eta_i}) \langle \vec{c_i} \cdot \vec{\eta_i} \rangle - \langle \vec{c_i} \cdot \vec{\eta_i} \rangle^2$
 $\approx 2(\vec{c_i} \cdot \vec{\eta_i}) \langle \vec{c_i} \cdot \vec{\eta_i} \rangle - \langle \vec{c_i} \cdot \vec{\eta_i} \rangle^2$

 $H = H_0 + \frac{J}{2} \sum_i \left[c_{i0} \vec{c_i} \cdot (\vec{\eta_i} \times \vec{\eta_i}) - \frac{1}{2} (\vec{c_i} \cdot \vec{\eta_i})^2 \right] + \text{const.}$

Step 2: Mean field approximation

1.
$$\langle c_{i0}\vec{c_i} \rangle = 0$$
, $\langle \vec{S_i} \rangle = 0$ ("non-magnetic solutions")
2. $(\vec{c_i} \cdot \vec{\eta_i})^2 = (\vec{c_i} \cdot \vec{\eta_i} - \langle \vec{c_i} \cdot \vec{\eta_i} \rangle)^2 + 2(\vec{c_i} \cdot \vec{\eta_i}) \langle \vec{c_i} \cdot \vec{\eta_i} \rangle - \langle \vec{c_i} \cdot \vec{\eta_i} \rangle^2$
 $\approx 2(\vec{c_i} \cdot \vec{\eta_i}) \langle \vec{c_i} \cdot \vec{\eta_i} \rangle - \langle \vec{c_i} \cdot \vec{\eta_i} \rangle^2$

 $H = H_0 - J_0 \chi_0 \sum_i \vec{c_i} \cdot \vec{\eta_i} + \text{const.} \quad , \quad \chi_0 = \langle \vec{c_i} \cdot \vec{\eta_i} \rangle$

Notice that c_{i0} drops out of the interaction!

 $H = H_0 - J_0 \chi_0 \sum_i \vec{c_i} \cdot \vec{\eta_i} + \text{const.}$

$$H = H_0 - J_0 \chi_0 \sum_i \vec{c_i} \cdot \vec{\eta_i} + \text{const.}$$

Step 3: Diagonalization

 $H = H_0 - J_0 \chi_0 \sum_i \vec{c_i} \cdot \vec{\eta_i} + \text{const.}$

Step 3: Diagonalization

$$H = \sum_{1/2BZ} \epsilon_{\vec{k}} a^{\dagger}_{\vec{k}0} a_{\vec{k}0} + \sum_{BZ} \varepsilon_{\vec{k}} \vec{A}^{\dagger}_{\vec{k}0} \vec{A}_{\vec{k}0} \quad , \ \varepsilon_{\vec{k}} = \frac{\epsilon_{\vec{k}}}{2} \pm \sqrt{\left(\frac{\epsilon_{\vec{k}}}{2}\right) + (J\chi_0)^2}$$

Scalar Majorana Fermi sea: Unaffected by Kondo interactions! Vector Majorana Fermi sea: Gapped with neutral fermionic excitations

Outline

Review

Kondo Insulators The De Haas-van Alphen effect

Experiments Quantum Oscillations in SmE

Theory

Majorana representation of the Kondo lattice at zero H-field Majorana representation of the Kondo lattice at finite H-field

 $H = -t \sum_{\sigma} \sum_{\langle ij \rangle} \left(\exp\left(\frac{ie}{\hbar c} \int_{i}^{j} \vec{A} \cdot \vec{d\ell} \right) c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.} \right) + J \sum_{i} \vec{s}_{i} \cdot \vec{S}_{i}$

$H = -t \sum_{\sigma} \sum_{\langle ij \rangle} \left(\exp\left(\frac{ie}{\hbar c} \int_{i}^{j} \vec{A} \cdot \vec{d\ell} \right) c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.} \right) + J \sum_{i} \vec{s}_{i} \cdot \vec{S}_{i}$

Result:

Majorana fermions can exhibit Quantum oscillations

- even though they are spinless and charge neutral.

Intuition:

Majorana fermions are superpositions of charged particles and holes. So while their average charge vanishes there can be quantum fluctuations that couple to magnetic fields!

J=0:
$$H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} \exp\left(\frac{ie}{\hbar c} \int_i^j \vec{A} \cdot d\vec{\ell}\right) c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}$$

J=0:
$$H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} \exp\left(\frac{ie}{\hbar c} \int_i^j \vec{A} \cdot d\vec{\ell}\right) c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}$$

Step 1: Formally solve the problem:

 $H_0 = \sum_{\sigma} \sum_{\alpha} \epsilon_{\alpha} c^{\dagger}_{\alpha\sigma} c_{\alpha\sigma} + E_0(\vec{H})$ with $\vec{H} = \vec{\nabla} \times \vec{A}$ and $E_0(\vec{H}) = 2 \sum_{\epsilon_{\alpha} < 0} \epsilon_{\alpha}$.

J=0:
$$H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} \exp\left(\frac{ie}{\hbar c} \int_i^j \vec{A} \cdot \vec{d\ell}\right) c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}$$

Step 1: Formally solve the problem:

$$H_0 = \sum_{\sigma} \sum_{\alpha} \epsilon_{\alpha} c^{\dagger}_{\alpha\sigma} c_{\alpha\sigma} + E_0(\vec{H})$$

with $\vec{H} = \vec{\nabla} \times \vec{A}$ and $E_0(\vec{H}) = 2 \sum_{\epsilon_{\alpha} < 0} \epsilon_{\alpha}$.

Step 2: Introduce Majorana fermions c_{0i} and $\vec{c_i} = (c_{ix}, c_{iy}, c_{iz})$.

J=0:
$$H_0 = -t \sum_{\sigma} \sum_{\langle ij \rangle} \exp\left(\frac{ie}{\hbar c} \int_i^j \vec{A} \cdot \vec{d\ell}\right) c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}$$

Step 1: Formally solve the problem:

$$H_0 = \sum_{\sigma} \sum_{\alpha} \epsilon_{\alpha} c^{\dagger}_{\alpha\sigma} c_{\alpha\sigma} + E_0(\vec{H})$$

with $\vec{H} = \vec{\nabla} \times \vec{A}$ and $E_0(\vec{H}) = 2 \sum_{\epsilon_\alpha < 0} \epsilon_\alpha$.

Step 2: Introduce Majorana fermions c_{0i} and $\vec{c_i} = (c_{ix}, c_{iy}, c_{iz})$.

Step 3: Express Majoranas as positive energy complex fermions:

$$H_0 = \sum_{\epsilon_{lpha} > 0} \epsilon_{lpha} (a^{\dagger}_{lpha 0} a_{lpha 0} + \vec{a}^{\dagger}_{lpha} \vec{a}_{lpha}) + 4 \left(\frac{1}{2} \sum_{\epsilon_{lpha} < 0} \epsilon_{lpha}
ight)$$

$$H_{0} = \sum_{\epsilon_{\alpha} > 0} \epsilon_{\alpha} (a_{\alpha 0}^{\dagger} a_{\alpha 0} + \vec{a}_{\alpha}^{\dagger} \vec{a}_{\alpha}) + 4 \left(\frac{1}{2} \sum_{\epsilon_{\alpha} < 0} \epsilon_{\alpha} \right)$$

$$H_{0} = \sum_{\epsilon_{\alpha} > 0} \epsilon_{\alpha} (a_{\alpha 0}^{\dagger} a_{\alpha 0} + \vec{a}_{\alpha}^{\dagger} \vec{a}_{\alpha}) + 4 \left(\frac{1}{2} \sum_{\epsilon_{\alpha} < 0} \epsilon_{\alpha} \right)$$

Results:

- 1) $E(\vec{H})$ changes with strength and direction of the magnetic field due to non-spherical Fermi surfaces.
 - \rightarrow Quantum oscillations!

$$H_{0} = \sum_{\epsilon_{\alpha} > 0} \epsilon_{\alpha} (a_{\alpha 0}^{\dagger} a_{\alpha 0} + \vec{a}_{\alpha}^{\dagger} \vec{a}_{\alpha}) + 4 \left(\frac{1}{2} \sum_{\epsilon_{\alpha} < 0} \epsilon_{\alpha} \right)$$

Results:

- E(H) changes with strength and direction of the magnetic field due to non-spherical Fermi surfaces.
 → Quantum oscillations!
- 2) All Majoranas contribute equally by 1/4 to the Quantum oscillations in the non-interacting case!

Even though they are charge neutral!

Interacting case $(J \neq 0)$: $H = H_0 + J \sum_i \vec{s}_i \cdot \vec{S}_i$

Interacting case $(J \neq 0)$: $H = H_0 + J \sum_i \vec{s}_i \cdot \vec{S}_i$

Rewrite Kondo term with Majorans and perform mean field ansatz. Diagonalize the mean field Hamiltonian. The result is:

Interacting case $(J \neq 0)$: $H = H_0 + J \sum_i \vec{s}_i \cdot \vec{S}_i$

Rewrite Kondo term with Majorans and perform mean field ansatz. Diagonalize the mean field Hamiltonian. The result is:

$$\begin{split} H &= \sum_{\epsilon_{\alpha} > 0} \epsilon_{\alpha} a_{\alpha 0}^{\dagger} a_{\alpha 0} + \sum_{\mathsf{all} \ \epsilon_{\alpha}} \varepsilon_{\alpha} \vec{A}_{\alpha 0}^{\dagger} \vec{A}_{\vec{k}0} + \frac{1}{4} E_{0}(\vec{H}) + \frac{3}{4} E_{v}(\vec{H}, \chi_{0}) \\ \text{with } \varepsilon_{\alpha} &= \frac{\epsilon_{\alpha}}{2} \pm \sqrt{\left(\frac{\epsilon_{\alpha}}{2}\right) + (J\chi_{0})^{2}} \end{split}$$

Interacting case $(J \neq 0)$: $H = H_0 + J \sum_i \vec{s}_i \cdot \vec{S}_i$

Rewrite Kondo term with Majorans and perform mean field ansatz. Diagonalize the mean field Hamiltonian. The result is:

$$H = \sum_{\epsilon_{\alpha}>0} \epsilon_{\alpha} a_{\alpha 0}^{\dagger} a_{\alpha 0} + \sum_{\text{all } \epsilon_{\alpha}} \varepsilon_{\alpha} \vec{A}_{\alpha 0}^{\dagger} \vec{A}_{\vec{k}0} + \frac{1}{4} E_{0}(\vec{H}) + \frac{3}{4} E_{\nu}(\vec{H}, \chi_{0})$$

with $\varepsilon_{\alpha} = \frac{\epsilon_{\alpha}}{2} \pm \sqrt{\left(\frac{\epsilon_{\alpha}}{2}\right) + (J\chi_{0})^{2}}$

Vacuum energy $E_{\nu}(\vec{H}, \chi)$ of vector Majoranas has weak H-field dependence. But the scalar Majoranas still contribute 1/4 of the free fermi gas value at the same H-field. Hence one can still observe quantum oscillations!