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Outline:

1. Helicons in metals. (Abrikosov, Fundamentals of the Theory of metals. Chapter 9.1) .
2. Maxwell equations in Weyl metals.

3. Evaluation of the conductivity tensor and dispersion of helicons in Weyl metals.

4. Conclusions



Metal in a static magnetic field. Hall conductivity O-ajy
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EM wave of this type is called “helicon”



The conduction and valence bands touch at discrete points,
with a linear dispersion relation in all three momentum space directions
moving away from the Weyl node.
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Hamiltonian of the Weyl semimetal with two nodes:
H =vpt?o - (—iV + 7°b) + 7%b

b, bO can be eliminated by gauge transformation: H = ’UDTZO' . (—’LV)

Gauge transformation generates additional term in the Hamiltonian:
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O(r,t) = 2(b-r — bot)



Theta-term modifies two Maxwell equations
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Wave equation in a Weyl metal
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We need an expression that relates current to the electric field.

Wave vector of EM field: ¢ < Rc_l

c = Ud/wm We = 6B/7nccy me — 6F/IUQD



Boltzaman equation and equations of motion: W, We <L €F
of fo—f
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r = vy(p) — p X Qy(p)

p=—cE—rx Be/c

v4(p) = Ve (p) = V,[opp(1 — -9 - B)

ﬂg — —gp/2p3 is the Berry curvature

’7 Dimensionless control parameter which they set to 1 at the end



Solution of the Boltzman equation:

1. Set E=0 while keeping B=Bz

9 (p) = :

exp(eg(p%_eF) -1

2. Solve Boltzman equation up to first order in the amplitude of a homogeneous
time-dependent electric field:

E = E(w)e ™!

In the collision integral take feq f(o) ( )

and search for the solution in the form:

fg(pat) — féo)(p) T 5fg(p7t)

Second term here is linear in electric field.



Current density carried by electrons at each Weyl node:
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Insert the distribution function fg(lo) (p) (ng(p7 t)
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Jo(t) = 7247T266FB X Bw)e™ + I ame

Correction to the Hall conductivity Has no effect
on the total current

They then evaluate the quantity 5.]9 (t) and obtain the optical conductivity W << W,
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wT > 1 Dielectric tensor:
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Zeroes of determinant
Det[CZ(qzaém — QEQm) — w2€€m] =0

corresponds to the modes of a Weyl metal

g is parallel to the static magnetic field
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Gapless mode:

On(g — 0) =
(4 ) wi/we + 2ach, [
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Main conclusions:

Theory of helicons propagating through a 3D Weyl semimetal is presented.

The optical conductivity tensor is calculated from Boltzmann transport theory, with the
inclusion of Berry curvature corrections.

It is demonstrated that the axion term characterizing the electromagnetic response of
Weyl semimetals alters the helicon dispersion with respect to that in non-topological metals.



find that the gapped modes are given by: Q1(¢ =0) =
w_, Qp2(qg=0) =wp/ /b, and Qp, 3(¢ = 0) = w4, where

Wi = \/(acb)z/(web)2 + w3 /ep L ach/(mey), with b = |b.

wg = 4mnee? /me

me = g/ V5



0f;”

0fo(p,t) = === (X' + Xye™' + Xo) e
g
€ D
Lo /yghcpr \/p2 _pg Ex :IZZEy
Xi — 6?][)5 e p — "
1—g ‘B 2p (0 Ewg)
2he p3
( 1—fygip—§B—{—(2fy—1) e 2B42 \ )
Xo = evp { (7_1)gi§2+5[ he p — (QT'LC) P ]pz >E_z
2he p 1_gﬁp_§B p | w
O=w-+1/T e D
g 2
l —~vg—=B
L * _ hc p
We = We (ppz) = We € D2
1—g B




