Exchange-interaction of two spin qubits mediated by a superconductor F. Hassler, G. Catelani, H. Bluhm;arXiv:1509.06380

Marcel Serina

October 5, 2015

CMT journal club

2 [System description](#page-6-0)

Current context

- Single spins as qubits in quantum dots
- Scalable long-range coupling scheme is needed
- Mediators: optical cavities, MW resonators, floating metallic and ferromagnetic couplers, spin chains, SC systems
- Short story for couplings of qubits in QDs by SC: (2000) Choi, Bruder, Loss PRB 62, 13569 \rightarrow 1 (2013) Leijnse, Flensberg PRL 111, 060501
- $\bullet \rightarrow$ 2 (2015) Hassler, Catelani, Bluhm arXiv:1509.06380

Background I, PRB Choi et al.

- Two dots tunnel-coupled to two SC leads. No direct coupling of QDs
- $H = H_s + H_D + H_T$, Hs-BCS SC. Same μ , Δ in both SC leads
- \bullet H_D one level ϵ_i with on-site repulsion U
- \bullet $\epsilon_a = \epsilon_b = \epsilon$
- SW transformation in H_T

Background II, PRB Choi et al.

- Regime Δ , $2\epsilon \ll U$
- Dots are at most singly-occupied
- **Some of the relevant** processes $\sim t^4$
- Two regimes $\frac{\epsilon}{\Delta} \ll 1, \frac{\epsilon}{\Delta} \gg 1$
- Respective processes a), b) resp. b), c) giving both Josephson type coupling betw. the SC leads and exchange int, betw. spins in QDs
- \bullet Just one SC instead of two? \rightarrow d) process analysis in Leijnse et al.

Background III, PRL Leijnse et al.

- Crossed Andreev reflection (CAR) vs. exchange. Intermediate states $|00\rangle$ vs. $|02\rangle$.
- \bullet Still in the same regime as before $\Delta, 2\epsilon \ll U.$
- \bullet $|02\rangle$ blocked by U, CAR is the only relevant process here. $J \sim e^{-\frac{x}{\xi_0}}$, ξ_0 SC coherence length (clean Al $\xi_0 = 2.3 \mu$ m)

Setup

- Ideal operation point: $|11\rangle$, $|02\rangle$ almost degenerate.
- $\epsilon_{1,1} = \epsilon_1 + \epsilon_2; \epsilon_{0,2} = 2\epsilon_2 + U_2; \delta \varepsilon = \varepsilon_{0,2} \varepsilon_{1,1}$
- Near degeneracy achieved by gating into $\epsilon_1 = \epsilon_2 + U_2 \delta \epsilon$

Description of the system

$$
H = H_D + H_{BCS} + H_T; H_D = H_1 + H_2; H_j = \epsilon_j n_j + \frac{1}{2} U_j n_j (n_j - 1)
$$

\n
$$
H_{BCS} = \sum_{k\sigma} E_k \beta_{k\sigma}^{\dagger} \beta_{k\sigma}; E_k = (\xi_k^2 + \Delta^2)^{1/2}; \xi_k = \hbar^2 k^2 / 2m - \mu
$$

\n
$$
c_{k\uparrow} = u_k \beta_{k\uparrow} + v_k \beta_{-k\downarrow}^{\dagger}, \quad c_{-k\downarrow}^{\dagger} = -v_k \beta_{k\uparrow} + u_k \beta_{-k\downarrow}^{\dagger}
$$

\n
$$
H_T = -t \sum_{\sigma} \left[c_{\sigma}^{\dagger}(0) d_{1\sigma} + c_{\sigma}^{\dagger}(R) d_{2\sigma} \right] + \text{H.c.}
$$

\n
$$
= -\frac{t}{L} \sum_{k\sigma} \left[c_{k\sigma}^{\dagger} d_{1\sigma} + e^{-ik_x R} c_{k\sigma}^{\dagger} d_{2\sigma} \right] + \text{H.c.}
$$

Assumptions

- Interaction mediated by virtual process with cost $\varepsilon_{1,1} - [\varepsilon_{0,1} + E_k]$ parametrized as $M = \Delta - (\varepsilon_2 + U_2 - \delta \varepsilon) > 0$
- Originally ϵ_1, ϵ_2 tuned by gates. Now we can tune $M, \delta \varepsilon$. M is in fact energy difference betw. ϵ_1 and gap edge.
- If we begin with triplet states of two electrons, this process is not giving anything (double occup. with same spin forbidden), singlet energy is lowered.
- Effective exchange Hamiltonian $H_{\text{eff}}=\frac{1}{4}$ $\frac{1}{4}$ J $\sigma_1 \cdot \sigma_2$, J > 0
- SC in ground state $T_e \ll \Delta$

Exchange mediated by clean SC I

$$
J = \alpha \Gamma^2 / \delta \varepsilon; \Gamma = 2\pi t^2 \rho_0; \rho_0 = m/2\pi \hbar^2 \quad \text{is DOS in normal state}
$$

$$
\alpha = \frac{1}{\Gamma^2} \left| \sum_{k\sigma} \frac{\langle 0, 2; 0 | H_T | 0, 1; k\sigma \rangle \langle 0, 1; k\sigma | H_T | 1, 1\sigma; 0 \rangle}{\varepsilon_{1,1} - \varepsilon_{0,1} - E_k} \right|^2
$$

$$
= \frac{1}{2\pi^2 \rho_0^2} |g(R; \Delta - M)|^2
$$

$$
g(r;E) = -i \int_0^\infty dt \langle 0|c_\sigma(r)e^{i(E-H_{\rm BCS})t/\hbar} c_\sigma^\dagger(0)|0\rangle
$$

=
$$
\int \frac{d^2k}{(2\pi)^2} \frac{u_k^2 e^{ik \cdot r}}{E - E_k}
$$

2

Exchange mediated by clean SC II

 \bullet Into polar coordinates, assuming $M \ll \Delta \ll \mu$ and $k_F r \gg 1$

$$
g(r;E) = \rho_0 \left(\frac{\pi \Delta}{M k_F r}\right)^{1/2} \cos(k_F r + 3\pi/4) e^{-r/2\xi} \quad \xi = \hbar v_F / \sqrt{8\Delta M}
$$

Effective coherence length ξ is $(\Delta/M)^{1/2} \gg 1$ longer than bare $\xi_0 = \hbar v_F / \pi \Delta$

$$
\alpha = 2\cos^2(k_F R + 3\pi/4)\alpha_0 \quad \alpha_0 = \frac{\Delta}{4\pi M k_F R} e^{-R/\xi}
$$

 \bullet cos² dependence from tunnel at point, modified in the more realistic case, but relevant only in clean SC.

Exchange mediated by disordered SC I

 $E+\xi_k$ $\frac{E+\xi_k}{E^2-E_k^2} \approx \frac{u_k^2}{E-E_k}$ holds in our limit. Thus its useful to go over $\sum_{k=1}^{n}$ Gorkov Greens function

$$
G(r;E) = \int \frac{d^2k}{(2\pi)^2} \frac{(E+\xi_k)e^{ik\cdot r}}{E^2 - E_k^2}
$$

 \bullet In the diffusion approximation, with ℓ being mean free path in disordered system, $D = \frac{v_{F} \ell}{2}$ and for weak disorder $k_{F} \ell \gg 1$ and $q \ll k_F$

$$
\int \frac{d^2k}{(2\pi)^2} \overline{G(k;E)G(k-q;E)} \; \approx \; \frac{\pi \rho_0}{2} \frac{\Delta^2}{(\Delta^2 - E^2)[(\Delta^2 - E^2)^{1/2} + \hbar Dq^2/2]}
$$

Exchange mediated by disordered SC II

$$
\overline{\alpha} = \frac{\Delta \xi_D^{1/2}}{2(2\pi)^{1/2} M k_F \ell R^{1/2}} e^{-R/\xi_D}
$$

 $\xi_D = \sqrt{\ell \xi/2}$ thus the exponential decay is given by different length scale and algebraic decay $\sim R^{-\frac{1}{2}}$ is slower as $\sim R^{-1}$ in clean case. $\frac{M}{\Delta} = 5 \times 10^{-3}$ (solid), $\frac{M}{\Delta} = 5 \times 10^{-4}$ (dashed)

Marcel Serina [Exchange-interaction of two spin qubits mediated by a SC](#page-0-0)

Estimation of the coupling scheme

- Starting from $J_0 \simeq \hbar(10 100)$ GHz for the direct exchange, we aim at $\alpha \simeq 10^{-3}$ to end up with $J \simeq \hbar(10-100)$ MHz.
- For Al $\Delta/k_B = 2.2$ K which corresponds to $\xi_0 = 2.3 \mu$ m for a clean sample. Aluminum has $v_F = 2.0 \times 10^6$ m/s that implies $k_F = 17$ nm⁻¹.
- To hold a stable detuning over the time of exchange and not to be affected by smearing of SC gap, lowest achievable $M = 0.1 \mu\text{eV}$.
- That gives $\overline{\alpha}$ larger than 10^{-3} for distances up to $R=11\,\mu$ m.

- Long-distance coupling of spin qubits in quantum dots over a distances up to $R = 10 \mu m$ is possible by means of 2d SC film tunnel coupled to the dots.
- Both clean and diffusive dirty SC can provide useful coupling.
- In fact, $R^{-\frac{1}{2}}$ algebraic decay can be eliminated by using 1d SC coupler.
- Everything is controlled by gate voltages.