Causality and quantum criticality with long-range interactions
arxiv:1508.00906 by M. F. Maghrebi, Z.-X. Gong, M. Foss-Feig, A. V. Gorshkov

Abstract: Quantum lattice systems with long-range interactions often exhibit drastically different behavior than their short-range counterparts. In particular, because they do not satisfy the conditions for the Lieb-Robinson theorem, they need not have an emergent relativistic structure in the form of a light cone. Adopting a field-theoretic approach, we study the one-dimensional transversefield Ising model and a fermionic model with long-range interactions, explore their critical and near-critical behavior, and characterize their response to local perturbations. We deduce the dynamic critical exponent, up to the two-loop order within the renormalization group theory, which we then use to characterize the emergent causal behavior. We show that beyond a critical value of the power-law exponent of long-range interactions, the dynamics effectively becomes relativistic. Various other critical exponents describing correlations in the ground state, as well as deviations from a linear causal cone, are deduced for a wide range of the power-law exponent.

CMT&QC JC 03/11/2015

3 [Results: Corrections from two-loop renormalization group](#page-14-0)

[Outline](#page-1-0)

Prerequisites & Systems

Systems considered:

 \rightarrow Transverse field Ising model (TFIM)

- Standard: $H = -\sum_i \left(\sigma_i^z \sigma_{i+1}^z + g \sigma_i^x \right)$.
- Long-ranged: $H_{\sigma}=-\sum_{i\neq j}$ $\frac{\sigma_i^z\sigma_j^z}{|i-j|^{1+\sigma}}-g\sum_i\sigma_i^x$.
- Non-interacting fermions
	- Standard: $H_F = -\sum_i (c_i^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_i) + J(c_i^{\dagger} c_{i+1}^{\dagger} + c_{i+1} c_i) - \mu c_i^{\dagger} c_i$.
	- Long-ranged hopping: $H'_F = H_F + \sum_{i \neq j} \frac{1}{|i-j|^{1+\sigma}} c_i^{\dagger} c_j$.
	- Long-ranged pairing: $H_F' = H_F + \sum_{i>j} \frac{1}{|i-j|^{1+\sigma}} c_i^{\dagger} c_j^{\dagger} + \text{h.c.}$

Prerequisites from theory

- **•** Lieb-Robinson bounds: Light-cones
- Critical exponents & response function & renormalization group theory

Prerequisites: Lieb-Robinson theorem & light cones (I)

Theorem: For each finite range interaction Φ, there exists a finite group velocity V_{Φ} and a strictly positive increasing function μ such that for $v > V_{\Phi}$:

$$
\lim_{|t|\to\infty;|x|>v|t|}\exp(\mu(v)|t|)\|\Big[\tau_t^{\Phi}\tau_x(A),B\Big]\|=0\qquad \qquad (1)
$$

 τ^{Φ}_t is a one-parameter group of automorphisms defined by the interaction Φ. The Hamiltonian of a finite system Λ is $H_{\Phi}(\Lambda) = \sum_{X \subset \Lambda} \Phi(X)$ for strictly local A and B. Conditions:

- $\Phi(X)$ is Hermitian far all X in \mathbb{Z}^ν
- $\Phi(X + a) = \tau_a \Phi(X)$ for X in \mathbb{Z}^{ν} and a in \mathbb{Z}^{ν}
- The union R_{Φ} of all X such that 0 is in X and $\Phi(X) \neq 0$ is a finite subset of \mathbb{Z}^{ν}

Prerequisites: Lieb-Robinson theorem & light cones (II)

Important note: in this work

Dynamical critical exponent \equiv shape of light cone

Reasoning:

- Dynamical critical exponent
- \sim space-time-scaling of the first maximum of the response function $D(t, x)$
- \sim speed at which information can reach a given point
- \Rightarrow Dynamical critical exponent can be compared with group velocity V_{Φ} of Lieb-Robinson theorem

Prerequisites: RG treatment – A Howto

The three steps in the renormalization group transformation:

- Elimination of fast modes by scaling of the "cutoff" $\Lambda \rightarrow \Lambda/s$
- Introduction of rescaled momenta $k' \equiv sk$ that go all the way to Λ
- **•** Rewrite effective action with rescaled fields $\Phi'(k') = \zeta \Phi_{\rm slow~modes}(k'/s)$ with a ζ chosen such that a certain coupling in the action's quadratic part remains with the same coefficient.

Quantities of interest (I)

Correlation function: $iG(t, x) = \langle \mathcal{T} \hat{\phi}(t, x) \hat{\phi}(0, 0) \rangle$ Response function: $iD(t, x) = \Theta(t)\langle [\hat{\phi}(t, x), \hat{\phi}(0, 0)]\rangle$

 $\mathcal{T} \equiv$ time-ordering operator $\hat{\phi} \equiv$ is the field in the Heisenberg picture (corresponding to the field theory of the model, see next slide)

 $\Theta(t) \equiv$ Heaviside step function.

Quantities of interest (II)

For quadratic scalar field theories with dispersion ω_{q} –

- Imaginary time-ordered correlation function: $\mathcal{G}(\omega, \bm{q}) = \frac{1}{\omega^2 + \omega_q^2}$
- **•** Real-time-ordered correlation function: $iG(t, R) = G(it + sgn(t)0^{+}, R)$ and hence $iG(t\rightarrow 0,R)=\mathcal {G}(0,R)\propto \int d\omega dq\, \mathcal {G}(\omega,q)e^{i q R}.$
- Causal response function is analytic continuation $i\omega \longrightarrow \omega + i0^+$ of ${\cal G}$: $D(\omega, q) = -\mathcal{G}(\omega, q) \Big|_{i\omega \to \omega + i0^+} = \frac{1}{(\omega + i0^+)^2 - \omega_q^2}.$

Quantities of interest (III)

- Action of continuum field theory around critical point of standard TFIM $(H = -\sum_i \left(\sigma_i^z \sigma_{i+1}^z + g \sigma_i^x \right))$: $S = \int d\tau \int dx \; (\partial_{\tau}\phi)^{2} + (\partial_{x}\phi)^{2} + \varrho\phi^{2} + u\phi^{4}$
- Action of continuum field theory around critical point of long-range TFIM $(H_{\sigma}=-\sum_{i\neq j}$ $\frac{\sigma_i^z \sigma_j^z}{|i-j|^{1+\sigma}} - g \sum_i \sigma_i^x$):

 $\mathcal{S}=\int d\omega\!\int\!d\mathsf{q}\,\left(\omega^2\!+\!\varrho\!+\!\mathsf{q}^2\!+\!\mathsf{B}_\sigma|\mathsf{q}|^\sigma\right)|\phi(\omega,\mathsf{q})|^2\!+\!\int d\tau\int d\mathsf{x}\;u\phi^4\,.$ Note 1: Mixing of standard and Fourier representation (convenience).

Note 2: Parameter $\rho \sim g - 1$ measures proximity to critical point.

Critical exponents summary

For the TFIM, with the dispersion: $\omega_{\bm{q}} = \sqrt{\rho + \bm{q}^2 + B_\sigma |\bm{q}|^\sigma}$ Results for dynamical critical exponent z and decay of correlations θ :

epsilon expansion: $\epsilon = 3\sigma/2 - 1$ and $s(\sigma) \approx 1/[24(1+\sigma^2)]$

Light-cones' / causal structure results summary

At criticality, the response functions D (TFIM) is described by the critical exponents z and θ , and the general scaling functions g_{σ}

Response Function: $0 < \sigma < 2$ at criticality

Response Function: $\sigma > 2$ at criticality

Norm of Resp. Funct.: Any $\sigma > 0$ away from criticality

[Causality & criticality & long-range interactions](#page-0-0)

RG treatment I

- Anomalous field dimension: $\eta_\mathrm{SR} = \frac{1}{4}$ 4
- For $\sigma > \frac{7}{4} = 2 \eta_\text{SR}$: Universal properties & critical exponents from Φ^4 model in one higher dimension
- Long-range coupling $|q|^{\sigma}|\phi(\omega,q)|^2$ can be considered as a perturbation to the short-range TFIM ($[\Phi] = \eta_{\rm SR}/2$) as long as $\sigma < 2 - \eta_{\rm SR}$.
- \bullet First consider d−dimensional action for $\sigma < 2 \eta_{\rm SR}$: $S = \int d\tau \int d^d x \ \left[A (\partial_\tau \phi)^2 + \varrho \phi^2 \right]$ $+ B_{\sigma} \int d\tau \int d^d\mathbf{x} \int d^d\mathbf{y} \frac{\phi(\tau, \mathbf{x}) \phi(\tau, \mathbf{y})}{|\mathbf{x}-\mathbf{y}|^{d+\sigma}}$ $\frac{(\tau, \mathsf{x}) \phi(\tau, \mathsf{y})}{|\mathsf{x}-\mathsf{y}|^{d+\sigma}} + u \int \!\! d\tau \int \!\! d^d \mathsf{x} \; \phi^4$

RG treatment II

$$
S = \int d\tau \int d^d x \left[A (\partial_\tau \phi)^2 + \varrho \phi^2 \right] + B_{\sigma} \int d\tau \int d^d x \int d^d y \frac{\phi(\tau, x) \phi(\tau, y)}{|x - y|^{d + \sigma}} + u \int d\tau \int d^d x \phi^4
$$

- Rescaling: $\mathbf{x} \to \mathbf{x}' = \mathbf{x}/b$, $\tau \to \tau' = \tau/b^z$, $\phi \to \phi' = b^a \phi$
- Dimensions: $[A] = -z + d 2a$, $[B_{\sigma}] = z \sigma + d 2a$, $[\rho] = z + d - 2a$, $[u] = z + d - 4a$
- Mean-field: quadratic part of S (except for ρ) is invariant under scaling \rightarrow $[A] = [B_{\sigma}] = 0$; thus: $z = \sigma/2$ and $n=1-\sigma/2$.
- Mean-field-anomalous field dimension from $a = (d 1 + \eta)/2$
- Mean-field upper bound for relevance of coupling: $[u] = 0 \rightarrow d_{\mu} = 3/2\sigma \rightarrow$ one-dimensional quadratic model fully captures physics for $\sigma < 2/3$.

RG treatment III

- Beyond mean-field terms for $\sigma \geq 2/3$: Corrections from expansion in $\epsilon = d_u - d = 3/2\sigma - 1$.
- Note: RG procedure may not renormalize non-analytical contributions to the action, hence $[B_{\sigma}] = 0$ and $\eta = 1 + z - \sigma$ to all orders of perturbation theory.
- \bullet ϵ -expansion in loop diagrams for two-point function:

yields: $\Delta\eta=\Delta z=\mathsf{s}(\sigma)\epsilon^2+\mathcal{O}(\epsilon^3)$ where $\mathsf{s}(\sigma)\approx 1/[24(1+\sigma^2)]^{1/2}$

$$
{}^{1} s(\sigma) = \frac{4\Gamma(3\sigma/2)}{27\sqrt{\pi}\Gamma(3\sigma/4 - 1/2)} \int_0^\infty dy \int_0^\pi d\theta \, \frac{y^{\sigma-1}(\sin\theta)^{3\sigma/2 - 2}}{(1 + y^2 + 2y\cos\theta)^{\sigma/4} [1 + y^{\sigma/2} + (1 + y^2 + 2y\cos\theta)^{\sigma/4}]^3} \, .
$$