Causality and quantum criticality with long-range interactions arxiv:1508.00906 by M. F. Maghrebi, Z.-X. Gong, M. Foss-Feig, A. V. Gorshkov

Abstract: Quantum lattice systems with long-range interactions often exhibit drastically different behavior than their short-range counterparts. In particular, because they do not satisfy the conditions for the Lieb-Robinson theorem, they need not have an emergent relativistic structure in the form of a light cone. Adopting a field-theoretic approach, we study the one-dimensional transversefield Ising model and a fermionic model with long-range interactions, explore their critical and near-critical behavior, and characterize their response to local perturbations. We deduce the dynamic critical exponent, up to the two-loop order within the renormalization group theory, which we then use to characterize the emergent causal behavior. We show that beyond a critical value of the power-law exponent of long-range interactions, the dynamics effectively becomes relativistic. Various other critical exponents describing correlations in the ground state, as well as deviations from a linear causal cone, are deduced for a wide range of the power-law exponent.

CMT&QC JC 03/11/2015

3 Results: Corrections from two-loop renormalization group

Outline

Prerequisites & Systems

Systems considered:

 \rightarrow Transverse field Ising model (TFIM)

- Standard: $H = -\sum_{i} \left(\sigma_{i}^{z} \sigma_{i+1}^{z} + g \sigma_{i}^{x} \right)$.
- Long-ranged: $H_{\sigma} = -\sum_{i \neq j} \frac{\sigma_i^z \sigma_j^z}{|i-j|^{1+\sigma}} g \sum_i \sigma_i^x$.
- Non-interacting fermions
 - Standard:

$$H_{F} = -\sum_{i} (c_{i}^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_{i}) + J (c_{i}^{\dagger} c_{i+1}^{\dagger} + c_{i+1} c_{i}) - \mu c_{i}^{\dagger} c_{i}.$$

• Long-ranged hopping:
$$H'_F = H_F + \sum_{i \neq j} \frac{1}{|i-j|^{1+\sigma}} c_i^{\dagger} c_j$$
.

• Long-ranged pairing: $H'_F = H_F + \sum_{i>j} \frac{1}{|i-j|^{1+\sigma}} c_i^{\dagger} c_j^{\dagger} + h.c.$

Prerequisites from theory

- Lieb-Robinson bounds: Light-cones
- Critical exponents & response function & renormalization group theory

Prerequisites: Lieb-Robinson theorem & light cones (I)

Theorem: For each finite range interaction Φ , there exists a finite group velocity V_{Φ} and a strictly positive increasing function μ such that for $v > V_{\Phi}$:

$$\lim_{|t|\to\infty;|x|>\nu|t|}\exp(\mu(\nu)|t|)\|\Big[\tau_t^{\Phi}\tau_x(A),B\Big]\|=0$$
(1)

 τ_t^{Φ} is a one-parameter group of automorphisms defined by the interaction Φ . The Hamiltonian of a finite system Λ is $H_{\Phi}(\Lambda) = \sum_{X \subset \Lambda} \Phi(X)$ for strictly local A and B. Conditions:

- $\Phi(X)$ is Hermitian far all X in $\mathbb{Z}^{
 u}$
- $\Phi(X + a) = \tau_a \Phi(X)$ for X in \mathbb{Z}^{ν} and a in \mathbb{Z}^{ν}
- The union R_{Φ} of all X such that 0 is in X and $\Phi(X) \neq 0$ is a finite subset of \mathbb{Z}^{ν}

Prerequisites: Lieb-Robinson theorem & light cones (II)

Important note: in this work

Dynamical critical exponent \equiv shape of light cone

Reasoning:

- Dynamical critical exponent
- \sim space-time-scaling of the first maximum of the response function D(t, x)
- $\sim\,$ speed at which information can reach a given point
- \Rightarrow Dynamical critical exponent can be compared with group velocity V_{Φ} of Lieb-Robinson theorem

Prerequisites: RG treatment – A Howto

The three steps in the renormalization group transformation:

- \bullet Elimination of fast modes by scaling of the "cutoff" $\Lambda \to \Lambda/s$
- Introduction of rescaled momenta $k'\equiv sk$ that go all the way to Λ
- Rewrite effective action with rescaled fields $\Phi'(k') = \zeta \Phi_{\text{slow modes}}(k'/s)$ with a ζ chosen such that a certain coupling in the action's quadratic part remains with the same coefficient.

Quantities of interest (I)

Correlation function: $iG(t,x) = \langle \mathcal{T}\hat{\phi}(t,x)\hat{\phi}(0,0) \rangle$ Response function: $iD(t,x) = \Theta(t)\langle [\hat{\phi}(t,x),\hat{\phi}(0,0)] \rangle$

 $\mathcal{T} \equiv$ time-ordering operator $\hat{\phi} \equiv$ is the field in the Heisenberg picture (corresponding to the field theory of the model, see next slide)

 $\Theta(t) \equiv$ Heaviside step function.

Quantities of interest (II)

For quadratic scalar field theories with dispersion ω_q-

- Imaginary time-ordered correlation function: $\mathcal{G}(\omega, q) = \frac{1}{\omega^2 + \omega_a^2}$
- Real-time-ordered correlation function: $iG(t, R) = \mathcal{G}(it + \operatorname{sgn}(t)0^+, R)$ and hence $iG(t \to 0, R) = \mathcal{G}(0, R) \propto \int d\omega dq \, \mathcal{G}(\omega, q) e^{iqR}$.
- Causal response function is analytic continuation $i\omega \longrightarrow \omega + i0^+$ of \mathcal{G} : $D(\omega, q) = -\mathcal{G}(\omega, q)\Big|_{i\omega \to \omega + i0^+} = \frac{1}{(\omega + i0^+)^2 - \omega_q^2}$.

Quantities of interest (III)

- Action of continuum field theory around critical point of standard TFIM $(H = -\sum_i (\sigma_i^z \sigma_{i+1}^z + g \sigma_i^x))$: $S = \int d\tau \int dx \ (\partial_\tau \phi)^2 + (\partial_x \phi)^2 + \varrho \phi^2 + u \phi^4$
- Action of continuum field theory around critical point of long-range TFIM $(H_{\sigma} = -\sum_{i \neq j} \frac{\sigma_i^z \sigma_j^z}{|i-j|^{1+\sigma}} g \sum_i \sigma_i^x)$:

$$\begin{split} S &= \int d\omega \int dq \; (\omega^2 + \varrho + q^2 + B_\sigma |q|^\sigma) \, |\phi(\omega,q)|^2 + \int d\tau \int dx \; u \phi^4 \, . \\ \text{Note 1: Mixing of standard and Fourier representation} \\ \text{(convenience).} \end{split}$$

Note 2: Parameter $\rho \sim g-1$ measures proximity to critical point.

Critical exponents summary

For the TFIM, with the dispersion: $\omega_q = \sqrt{\rho + q^2 + B_\sigma |q|^\sigma}$ Results for dynamical critical exponent z and decay of correlations θ :

	$0 < \sigma < \frac{2}{3}$	$rac{2}{3} < \sigma < rac{7}{4}$	$\frac{7}{4} < \sigma$
z	σ/2	$\sigma/2 + s(\sigma)\epsilon^2 + \mathcal{O}(\epsilon^3)$	1
θ	$1-\sigma/2$	$1 - \sigma/2 + s(\sigma)\epsilon^2 + \mathcal{O}(\epsilon^3)$	1/4

epsilon expansion: $\epsilon = 3\sigma/2 - 1$ and $s(\sigma) \approx 1/[24(1 + \sigma^2)]$

Light-cones' / causal structure results summary

At criticality, the response functions D (TFIM) is described by the critical exponents z and θ , and the general scaling functions g_{σ}

	$0 < \sigma < 1$	$1 < \sigma < \frac{7}{4}$	$\frac{7}{4} < \sigma$
Critical	Non-linear $D(t,R) = R^{- heta} g_{\sigma}(t/R^z)$		Linear
Non-critical	Non-linear	Linear	

Response Function: $0 < \sigma < 2$ at criticality

Response Function: $\sigma > 2$ at criticality

Norm of Resp. Funct.: Any $\sigma > 0$ away from criticality

RG treatment I

- Anomalous field dimension: $\eta_{SR} = \frac{1}{4}$
- For $\sigma > \frac{7}{4} = 2 \eta_{SR}$: Universal properties & critical exponents from Φ^4 model in one higher dimension
- Long-range coupling $|q|^{\sigma}|\phi(\omega,q)|^2$ can be considered as a perturbation to the short-range TFIM ($[\Phi]=\eta_{\rm SR}/2$) as long as $\sigma<2-\eta_{\rm SR}$.
- First consider d-dimensional action for $\sigma < 2 \eta_{\text{SR}}$: $S = \int d\tau \int d^d \mathbf{x} \left[A (\partial_\tau \phi)^2 + \varrho \phi^2 \right]$ $+ B_\sigma \int d\tau \int d^d \mathbf{x} \int d^d \mathbf{y} \frac{\phi(\tau, \mathbf{x})\phi(\tau, \mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{d+\sigma}} + u \int d\tau \int d^d \mathbf{x} \phi^4$

RG treatment II

$$S = \int d\tau \int d^{d} \mathbf{x} \left[A \left(\partial_{\tau} \phi \right)^{2} + \varrho \phi^{2} \right] + B_{\sigma} \int d\tau \int d^{d} \mathbf{x} \int d^{d} \mathbf{y} \frac{\phi(\tau, \mathbf{x}) \phi(\tau, \mathbf{y})}{|\mathbf{x} - \mathbf{y}|^{d + \sigma}} + u \int d\tau \int d^{d} \mathbf{x} \phi^{4}$$

- Rescaling: $\mathbf{x} \to \mathbf{x}' = \mathbf{x}/b, \quad \tau \to \tau' = \tau/b^z, \quad \phi \to \phi' = b^a \phi$
- Dimensions: $[A] = -z + d 2a, [B_{\sigma}] = z \sigma + d 2a,$ $[\varrho] = z + d - 2a, [u] = z + d - 4a$
- Mean-field: quadratic part of S (except for ρ) is invariant under scaling → [A] = [B_σ] = 0; thus: z = σ/2 and η = 1 − σ/2.
- Mean-field-anomalous field dimension from $a = (d 1 + \eta)/2$
- Mean-field upper bound for relevance of coupling:
 [u] = 0 → d_u = 3/2σ → one-dimensional quadratic model fully captures physics for σ < 2/3.

RG treatment III

- Beyond mean-field terms for $\sigma \ge 2/3$: Corrections from expansion in $\epsilon = d_u d = 3/2\sigma 1$.
- Note: RG procedure may not renormalize non-analytical contributions to the action, hence $[B_{\sigma}] = 0$ and $\eta = 1 + z \sigma$ to all orders of perturbation theory.
- ϵ -expansion in loop diagrams for two-point function:

$$\bigcirc$$
 $-\bigcirc$

yields: $\Delta \eta = \Delta z = s(\sigma)\epsilon^2 + \mathcal{O}(\epsilon^3)$ where $s(\sigma) \approx 1/[24(1+\sigma^2)]$.¹

$${}^{1}s(\sigma) = \frac{4\Gamma(3\sigma/2)}{27\sqrt{\pi}\Gamma(3\sigma/4-1/2)} \int_{0}^{\infty} dy \int_{0}^{\pi} d\theta \frac{y^{\sigma-1}(\sin\theta)^{3\sigma/2-2}}{(1+y^{2}+2y\cos\theta)^{\sigma/4} \left[1+y^{\sigma/2}+(1+y^{2}+2y\cos\theta)^{\sigma/4}\right]^{3}}$$