Phase diagram of the interacting Majorana chain

arXiv:1505.03966

Emergent Supersymmetry from Strongly Interacting Majorana Zero Modes

arXiv:1504.05192

Armin Rahmani, Xiaoyu Zhu, Marcel Franz, and Ian Affleck

University of British Columbia, Vancouver, Canada

Outline

- 1D models of strongly correlated electrons
- Physical Realization
- Phase Diagram
- Strong and weak coupling limits
- Attractive interactions
- Repulsive interactions
- Experimental Signatures

1D models of strongly correlated electrons

(a) Hubbard chain:

$$H = -t \sum_{j\sigma} (c_{j,\sigma}^{\dagger} c_{j+1,\sigma} + H.C.) + U \sum_{j} \hat{n}_{j,\uparrow} \hat{n}_{j,\downarrow} \quad \hat{n}_{j,\sigma} = c_{j,\sigma}^{\dagger} c_{j,\sigma}$$

(b) Dirac chain (spinless fermions) $H = \sum \left| -t(c_j^{\dagger}c_{j+1} + H.C.) + V(\hat{n}_j - 1/2)(\hat{n}_{j+1} - 1/2) \right|$ (c) Majorana chain $H = \sum \left[it\gamma_j \gamma_{j+1} + g\gamma_j \gamma_{j+1} \gamma_{j+2} \gamma_{j+3} \right]$ $\gamma_j^{\dagger} = \gamma_j, \qquad \{\gamma_j, \gamma_i\} = 2\delta_{ij}$ $\gamma_i^2 = 1$

Physical Realization

Superconducting order is induced in the surface of a strong topological insulator (STI). Magnetic field **B** induces Abrikosov vortices in the SC order parameter. Each vortex hosts an unpaired Majorana zero mode γ_j .

$$\{\gamma_i, \gamma_j\} = 2\delta_{ij} \qquad \gamma_i^{\dagger} = \gamma_i$$

C.K. Chiu, D. I. Pikulin, and M. Franz, Phys. Rev. B **91**, 165402 (2015) Liang Fu and C. L. Kane, Phys. Rev. Lett. **100** 096407 (2008)

Physical Realization

Interaction term:

$$H_{\text{int}} = \sum_{ijkl} g_{ijkl} \gamma_i \gamma_j \gamma_k \gamma_l$$

$$\uparrow$$
real constants

The interaction term arises from Coulomb interactions

Interaction strength $g \approx (10.6 \text{ meV}) \times e^{-d^2/\pi\xi^2}$

Hopping amplitude $t \approx \mu e^{-d^2/4\pi\xi^2}$

Access the strong coupling regime $|t| \ll |g|$ by tuning μ

Lattice structures for interacting Majorana fermions

- a) 1D chain
- b) two-leg ladder
- c) diamond chain
- d) square lattice
- e) modified square lattice with with alternate sites occupied by double vortices

Lattice structures for interacting Majorana fermions

A. Milsted, L. Seabra, I. C. Fulga, C. W. J. Beenakker, E. Cobanera, Phys. Rev. B **92**, 085139 (2015)

Array of nanowires on a superconducting substrate, with a delocalized Majorana edge mode composed out of coupled zero-modes localized at the end points.

The end points of each nanowire form a 1D lattice of Majorana operators

$$H = -i\sum_{s} \alpha_{s} \gamma_{s} \gamma_{s+1} - \sum_{s} k_{s} \gamma_{s} \gamma_{s+1} \gamma_{s+2} \gamma_{s+3}$$

Phase diagram

$$H = \sum_{j} \left[it\gamma_j \gamma_{j+1} + g\gamma_j \gamma_{j+1} \gamma_{j+2} \gamma_{j+3} \right]$$

Dirac fermion operators: $c_j = (\gamma_{2j} + i\gamma_{2j+1})/2$

$$\hat{p}_j = 2\hat{n}_j - 1$$

$$H = \sum_{j} \left(t \left[\hat{p}_{j} - (c_{j}^{\dagger} - c_{j})(c_{j+1}^{\dagger} - c_{j+1}) \right] + g \left[-\hat{p}_{j}\hat{p}_{j+1} + (c_{j}^{\dagger} - c_{j})\hat{p}_{j+1}(c_{j+1}^{\dagger} + c_{j+2}] \right)$$

Solved using DMRG and field theory/RG considerations

Strong coupling limit

Nontrivial ground state!

Consider a model with alternating hopping and interaction terms:

$$H = \sum_{j} (it\gamma_{2j}\gamma_{2j+1} + it_2\gamma_{2j+1}\gamma_{2j+2} + g_1\gamma_{2j}\gamma_{2j+1}\gamma_{2j+2}\gamma_{2j+3} + g_2\gamma_{2j+1}\gamma_{2j+2}\gamma_{2j+3}\gamma_{2j+4})$$

$$\downarrow Jordan-Wigner transformation$$

$$H = t_1 \sum_{j} \sigma_j^z - t_2 \sum_{j} \sigma_j^x \sigma_{j+1}^x - g_1 \sum_{j} \sigma_j^z \sigma_{j+1}^z - g_2 \sum_{j} \sigma_j^x \sigma_{j+2}^x$$

Simplicity arises when $g_2=0$ and $t_1=0=t_2$

Combine every second pair of Majorana's to make a Dirac

$$c_j = (\gamma_{2j} + i\gamma_{2j+1})/2$$
$$i\gamma_{2j}\gamma_{2j+1} = 2c_j^{\dagger}c_j - 1 = 2n_j - 1$$

$$H = -g_1 \sum_{j} (2\hat{n}_j - 1)(2\hat{n}_{j+1} - 1) = -g_1 \sum_{j} \hat{p}_j \hat{p}_{j+1}$$

Strong coupling limit

Attractive Interactions g>0: $p_j = 1$ or $p_j = -1$ FM Ising chain

Repulsive Interactions g<0: $p_j = \pm (-1)^j$ AFM Ising chain

Sites of the Majorana chain

Occupied Dirac level

Unoccupied Dirac level

Strong coupling limit

Small nonzero t in the dimerised Hamiltonian:

$$H = \sum_{j} (t\hat{p}_j - g\hat{p}_j\hat{p}_{j+1})$$

The effects of the hopping term are different and depend on the sign of g

Attractive Interactions g>0t>0 Empty Dirac levels $first order transition with a jump in <math>\langle \hat{p}_j \rangle$ at t=0t<0 Filled Dirac levels</td>

Repulsive Interactions g<0

Degenerate ground states for $|t_1| < |g_1|$ There is a critical t above which the ground state has either all levels empty or filled, depending on the sign of t.

Spin chain representation

$$\hat{p}_j = \sigma_j^z$$

Low energy excitations with linear dispersion of slope v=4t at k=0 and k= π $\gamma_j(t) = 2\gamma_R(\nu t - j) + (-1)^j 2\gamma_L(\nu t + j)$

 $\gamma_{R/L}(\nu t \mp j)$ Relativistic right/left moving Majorana fermion field

$$H_0 = i\nu \int dx [\gamma_R \partial_x \gamma_R - \gamma_L \partial_x \gamma_L] \longrightarrow \begin{array}{l} \text{Massless conformal field theory} \\ \text{with } c=1/2, \text{ corresponding to the} \\ \text{transverse field Ising model} \end{array}$$

Interaction term:

$$H_{int} \approx -256g \int dx \gamma_R \partial_x \gamma_R \gamma_L \partial_x \gamma_L \longrightarrow \text{ RG scaling} = 4$$

Extended massless Ising phase in the vicinity of g=0

$$H_0 = i\nu \int dx [\gamma_R \partial_x \gamma_R - \gamma_L \partial_x \gamma_L]$$

Massless conformal field theory with c=1/2, corresponding to the transverse field Ising model

Interaction term:

$$H_{int} \approx -256g \int dx \gamma_R \partial_x \gamma_R \gamma_L \partial_x \gamma_L \longrightarrow \text{RG scaling} = 4$$

Extended massless Ising phase in the vicinity of g=0

Low energy excitations with linear dispersion of slope v=4t at k=0 and k= π $\gamma_j(t) = 2\gamma_R(\nu t - j) + (-1)^j 2\gamma_L(\nu t + j)$

 $\gamma_{R/L}(\nu t \mp j)$ Relativistic right/left moving Majorana fermion field

$$H_0 = i\nu \int dx [\gamma_R \partial_x \gamma_R - \gamma_L \partial_x \gamma_L] \longrightarrow \begin{array}{l} \text{Massless conformal field theory} \\ \text{with } c=1/2, \text{ corresponding to the} \\ \text{transverse field Ising model} \end{array}$$

Interaction term:

$$H_{int} \approx -256g \int dx \gamma_R \partial_x \gamma_R \gamma_L \partial_x \gamma_L \longrightarrow \text{ RG scaling} = 4$$

Extended massless Ising phase in the vicinity of g=0

Low energy excitations with linear dispersion of slope v=4t at k=0 and k= π $\gamma_j(t) = 2\gamma_R(\nu t - j) + (-1)^j 2\gamma_L(\nu t + j)$

 $\gamma_{R/L}(\nu t \mp j)$ Relativistic right/left moving Majorana fermion field

$$H_{0} = i\nu \int dx [\gamma_{R}\partial_{x}\gamma_{R} - \gamma_{L}\partial_{x}\gamma_{L}] \longrightarrow \begin{array}{c} \text{Massless conformal field theory with restrict, corresponding to the transverse field Ising model} \\ \text{Interaction terms} \\ H_{int} \approx -256g \int dx \\ \text{Extended phase wit} \end{array}$$

Attractive Interactions

The second simplest minimal model is the TriCritical Ising model with c=7/10

Fermion parity for a chain of L=2l

$$F = \prod_{j=1}^{l-1} (i\gamma_{2j}\gamma_{2j+1}) = \prod_{j=1}^{l-1} \hat{p}_j = (-1)^{N_F + l}$$

Number of Dirac fermions added to the vacuum state

Universal ratios at the critical point

CFT	с	$\frac{E_{\mathrm{A},0}^{\mathrm{odd}} - E_{\mathrm{A},0}^{\mathrm{even}}}{E_{\mathrm{A},1}^{\mathrm{even}} - E_{\mathrm{A},0}^{\mathrm{even}}}$	$\frac{E_{\rm P,0}^{\rm even} - E_{\rm A,0}^{\rm even}}{E_{\rm A,1}^{\rm even} - E_{\rm A,0}^{\rm even}}$	$\frac{E_{\rm P,1}^{\rm even} - E_{\rm A,0}^{\rm even}}{E_{\rm A,1}^{\rm even} - E_{\rm A,0}^{\rm even}}$	$\frac{E_{\mathrm{A},0}^{\mathrm{even}} - \epsilon_0 L}{E_{\mathrm{A},1}^{\mathrm{even}} - E_{\mathrm{A},0}^{\mathrm{even}}}$
Ising	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$
TCI	$\frac{7}{10}$	$\frac{7}{2}$	$\frac{3}{8}$	$\frac{35}{8}$	$\frac{7}{24}$

 E_0 ground state energy E_1 first excited state energy E_A Anti periodic boundary conditions E_P Periodic boundary conditions E^{odd} Odd fermion parity sector E^{even} Even fermion parity sector ϵ_0 energy density of the ground
state in the thermodynamic limit

Attractive Interactions

 $E_{A,0}^{\text{even}} = \epsilon_0 L - \frac{2\pi\nu c}{L} \xrightarrow{12} Direct access to central charge$

The Tricritical Ising model is the only conformal field theory that exhibits supersymmetry

Attractive Interactions

 $E_{A,0}^{\text{even}} = \epsilon_0 L - \frac{2\pi\nu c}{L} \frac{12}{12}$ Direct access to central charge

8 $\frac{E_{\mathrm{A},0}^{\mathrm{odd}} - E_{\mathrm{A},0}^{\mathrm{even}}}{E_{\mathrm{A},1}^{\mathrm{even}} - E_{\mathrm{A},0}^{\mathrm{even}}}$ g = 17 Detect the $t_c = 0.00405$ 6 -t = 0-t = 0.0025 -t = 0.0034 t = 0.0043 t = 0.005-t = 0.0062 → t = 0.11 t = 0.50 60 50 70 80 110 30 90 100 120 40 20 L 35/8 7/2d) Use t_c to test all ratios Ising+LL Ising gapped gapped 4-fold c = 3/2c = 1/22-fold 3/8 7/24 g/t 0 generalized Lifshitz TCI C-IC c=7/10 *z*=3 The Tricritical Ising model supersymmetry

Calculate **central charge** from DMRG calculations of the entanglement entropy

Lifshitz transition

t/g = -3.512g/t=-0.285

 $c = 3/2 \implies 3$ species of low energy Majoranas

Calculate **central charge** from DMRG calculations of the entanglement theory

Lifshitz transition

t/g = -3.512g/t=-0.285

 $c = 3/2 \implies 3$ species of low energy Majoranas

same behaviour with a model with third neighbour hopping

$$H = i \sum_{j} \gamma_{j} [t \gamma_{j+1} + t' \gamma_{j+3}] = \frac{1}{2} \sum_{k} E_{k} \gamma(-k) \gamma(k)$$
$$E_{k} = 4t \sin k + 4t' \sin 3k$$
$$t > 0 , t' < 0$$

$$\sin k_0 = rac{1}{2}\sqrt{3+t/t'}$$

Velocity at k=0 $u_0 = 16 \sin^2 k_0$
Velocity at k=k_0 $u = 2\nu_0 \cos k_0$

Majorana and Dirac fermion with left/right movers

$$\gamma_{j} \approx 2\gamma_{L}(j) + (-1)^{j} 2\gamma_{R}(j) + [e^{-ik_{0}j}\psi_{R}(j) + e^{i(k_{0}-\pi)}\psi_{L} + \text{H.C.}$$
$$H_{0} = i \int dx \left(\nu_{0}(\gamma_{R}\partial_{x}\gamma_{R} - \gamma_{L}\partial_{x}\gamma_{L}) + \nu(\psi_{R}^{\dagger}\partial_{x}\psi_{R} - \psi_{L}^{\dagger}\partial_{x}\psi_{L})\right)$$

Effect of interactions

2.

$$H_{\rm int} \approx g_1 \int dx \gamma_R \gamma_L (\psi_R \psi_L + \psi_R^{\dagger} \psi_L^{\dagger})$$

RG scaling > 2
Irrelevant!

1

Ising+LL phase (Free Majorana particles)

Comparison with DMRG results

g=-1 t=2.25 \Rightarrow DMRG data \bigcirc LL excitations \diamondsuit Ising excitations Fitting parameters K = 0.4517, $k_0 = 0.5444$

Fitting parameters K = 0.4611, $k_0 = 0.5373$

$$H' \propto \int dx \gamma_R \gamma_L [e^{i(4k_0 - \pi)} \psi_R^{\dagger} \partial_x \psi_R^{\dagger} \psi_L \partial_x \psi_L - \text{H.C.}] \quad \text{with RG scaling} \le 2$$

Critical value for the C-IC transition g/t = -2.86

Experimental Signatures

Experimental signatures using scanning tunnelling microscopy (STM)

Tunneling current

 $\langle I \rangle \propto \mathrm{Im}G_R(-eV)$

$$G_R(\omega) = -i \int dt e^{i\omega t} \langle [\gamma_j(t)\psi_0(t), \gamma_j(0)\psi_0^{\dagger}(0)] \rangle$$

 ψ_0 Annihilates an electron at the tip

 $I_{\rm Ising} \propto V$ $I_{\rm TCI} \propto {\rm sign}(V) |V|^{7/5}$ $I_{\rm Lifshitz} \propto |V|^{1/3}$ $I_{\rm LL} \propto V^{(K+1/K)/2}$