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1D models of strongly correlated electrons  
▶ (a) Hubbard chain:
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(c) Majorana chain▶
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Physical Realization

Liang Fu and C. L. Kane, Phys. Rev. Lett. 100 096407 (2008)

Superconducting order is induced in the surface of a strong topological insulator (STI).
 Magnetic field B induces Abrikosov vortices in the SC order parameter. Each vortex hosts 
an unpaired Majorana zero mode γj.

C.K. Chiu, D. I. Pikulin, and M. Franz, Phys. Rev. B 91, 165402 (2015) 

{�i, �j} = 2�ij �†
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Physical Realization

Hint =
X

ijkl

gijkl�i�j�k�lInteraction term:

real constants

The interaction term arises from Coulomb interactions 

Interaction strength 

Hopping amplitude

g ⇡ (10.6 meV)⇥ e�d2/⇡⇠2

t ⇡ µe�d2/4⇡⇠2

Access the strong coupling regime                      by tuning μ|t| ⌧ |g|



Lattice structures for interacting Majorana fermions

a) 1D chain 
b) two-leg ladder
c) diamond chain 
d) square lattice 
e) modified square lattice with with alternate sites occupied by double vortices 



Lattice structures for interacting Majorana fermions

Array of nanowires on a superconducting substrate, with a delocalized 
Majorana edge mode composed out of coupled zero-modes localized at 
the end points.

A. Milsted, L. Seabra, I. C. Fulga, C. W. J. Beenakker, E. Cobanera, 
Phys. Rev. B 92, 085139 (2015)
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The end points of each nanowire  form a 1D lattice of Majorana operators 

http://arxiv.org/find/cond-mat/1/au:+Milsted_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Seabra_L/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Fulga_I/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Beenakker_C/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Cobanera_E/0/1/0/all/0/1


Dirac fermion operators: cj = (�2j + i�2j+1)/2
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Solved using DMRG 
and field theory/RG 
considerations

Phase diagram
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Strong coupling limit
Nontrivial ground state!
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Consider a model with alternating hopping and interaction terms:

Simplicity arises when g2=0 and t1=0=t2

)
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i�2j�2j+1 = 2c†jcj � 1 = 2nj � 1

Combine every second 
pair of Majorana’s to 

make a Dirac
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Strong coupling limit

Sites of the Majorana chain

Occupied Dirac level Unoccupied Dirac level

Attractive Interactions g>0: pj = 1 or pj = �1 FM Ising chain

Repulsive Interactions g<0: pj = ±(�1)j AFM Ising chain



Strong coupling limit
Small nonzero t in the dimerised Hamiltonian:

H =
X

j

(tp̂j � gp̂j p̂j+1)

The effects of the hopping term are different and depend on the sign of g

Attractive Interactions g>0 { t>0  Empty Dirac levels

t<0  Filled Dirac levels

First order transition with a jump in         at t=0hp̂ji

Repulsive Interactions g<0 Degenerate ground states for |t1| < |g1|

Spin chain representation 

There is a critical t above which the ground state 
has either all levels empty or filled, depending on 
the sign of t. 

p̂j = �z
j



Weak coupling limit

Noninteracting limit: 

�j(t) = 2�R(⌫t� j) + (�1)j2�L(⌫t+ j)

Low energy excitations with linear dispersion of slope ν=4t at k=0 and k=π

�R/L(⌫t⌥ j) Relativistic right/left moving Majorana fermion field 
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Massless conformal field theory 
with c=1/2, corresponding to the 
transverse field Ising model 
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Interaction term:

Extended massless Ising phase in the vicinity of g=0



Weak coupling limit

Noninteracting limit: 
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Interaction term:

E(k) = 4t sink

Right-movers Left-movers

Extended massless Ising phase in the vicinity of g=0



Weak coupling limit

Noninteracting limit: 
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Low energy excitations with linear dispersion of slope ν=4t at k=0 and k=π
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Interaction term:

Extended massless Ising phase in the vicinity of g=0



Weak coupling limit

Noninteracting limit: 

�j(t) = 2�R(⌫t� j) + (�1)j2�L(⌫t+ j)

Low energy excitations with linear dispersion of slope ν=4t at k=0 and k=π

�R/L(⌫t⌥ j) Relativistic right/left moving Majorana fermion field 
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Massless conformal field theory 
with c=1/2, corresponding to the 
transverse field Ising model 
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Interaction term:

Extended phase with a Majorana field in the vicinity of g=0



Attractive Interactions

F =
l�1Y

j=1

(i�2j�2j+1) =
l�1Y

j=1

p̂j = (�1)NF+l

Fermion parity for a chain of L=2l

Number of Dirac fermions 
added to the vacuum state

Universal ratios at the critical point

E0

E1

EA

EP

Eodd

Eeven

ground state energy 

first excited state energy 

Anti periodic boundary conditions

Periodic boundary conditions

Odd fermion parity sector

Even fermion parity sector

✏0 energy density of the ground 
state in the thermodynamic limit

The second simplest minimal model is the 
TriCritical Ising model with c=7/10



Attractive Interactions

Eeven
A,0 = ✏0L� 2⇡⌫

L

c

12

Direct access to central charge 

Detect the tc = 0.00405

Use tc to test all ratios

The Tricritical Ising model is the only conformal field theory that exhibits 
supersymmetry 

g = 1



Attractive Interactions

Eeven
A,0 = ✏0L� 2⇡⌫

L

c

12

Direct access to central charge 

Detect the tc = 0.00405

Use tc to test all ratios

The Tricritical Ising model is the only conformal field theory that exhibits 
supersymmetry 

g = 1



Repulsive Interactions g<0 
Calculate central charge from DMRG calculations of the entanglement entropy 

Lifshitz transition 
t/g= -3.512 
g/t=-0.285

c = 3/2  ⇒ 3 species of low energy Majoranas



Repulsive Interactions g<0 
Calculate central charge from DMRG calculations of the entanglement theory 

Lifshitz transition 
t/g= -3.512 
g/t=-0.285

same behaviour with a model with third neighbour hopping

c = 3/2  ⇒ 3 species of low energy Majoranas



Repulsive Interactions g<0 
H = i

X

j

�j [t�j+1 + t0�j+3] =
1

2

X

k

Ek�(�k)�(k)

Ek = 4tsink + 4t0sin3k
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Velocity at k=0

Velocity at k=k0

Majorana and Dirac fermion with left/right movers
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Repulsive Interactions g<0 
Effect of interactions

Hint ⇡
Z

dxg0 :  †
L L 

†
R R :

g0 = �16g(cosk0 � cos3k0) > 0 Luttinger Liquid 

K = 1� g0
2⇡⌫

< 1

Hint ⇡ g1

Z
dx�R�L( R L +  †

R 
†
L)

1.

2.

RG scaling > 2 
Irrelevant! 

Ising+LL phase (Free Majorana particles)



Repulsive Interactions g<0 
Comparison with DMRG results

g=-1 
t=2.25
☆DMRG data
⃝ LL excitations

◇ Ising excitations

K = 0.4517 , k0 = 0.5444

Fitting parameters

Fitting parameters

K = 0.4611 , k0 = 0.5373



Repulsive Interactions g<0 
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Repulsive Interactions g<0 
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g/t = �2.86
Critical value for the C-IC transition



Experimental Signatures
Experimental signatures using scanning tunnelling microscopy (STM) 

Tunneling current hIi / ImGR(�eV )

GR(!) = �i

Z
dtei! th[�j(t) 0(t), �j(0) 

†
0(0)]i

 0  Annihilates an electron at the tip

IIsing / V

ILifshitz / |V |1/3

ILL / V (K+1/K)/2

ITCI / sign(V )|V |7/5


