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Fermionic Z2 Topological Order

O(1)
α =

∏
n∈vertex(α) γn

O(2)
β =

∏
n∈vertex(β) γn

System:

• Square/Octagon lattice with one Majorana
per site

• {γn, γm} = 2δnm

• Periodic boundary conditions

Hamiltonian: H = −u1
∑

αO
(1)
α − u2

∑
β O

(2)
β

• Plaquette operators mutually commute

• Eigenvalues O(1,2)
α,β = ±1

• Ground state: O(1,2)
α,β = +1 ∀α, β

• Excited states: O(1,2)
α,β = −1 for some α, β
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Ground State Degeneracy

Total fermion parity Γ is conserved.

Γ = (iγ1γ2)...(iγN−1γN) = iN/2
∏

n γn with [Γ,H] = 0

We study the system in a sector of fixed fermion parity Γ.

• Ground state is defined by O(1,2)
α,β = +1 ∀α, β

• Each constraint reduced Hilbert space dimension by 1/2

GSD =
2

N
2 �1

2Nconstraint

Total Hilbert space
dimension

Total fermion
parity constraint
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Ground State Degeneracy

We devide the system into
three types of plaquettes
with different color:

• Γ =
∏
α∈AO

(1)
α =

∏
α∈B O

(2)
β =

∏
α∈C O

(1)
γ

This gives 1 constraint per color.

• O(1)
α = +1 ∀ α fixes products of two fermion

parities around all square plaquettes.

This gives 1
2(N2 ) constraints.

• O(2)
β,γ = +1 ∀ α fixes products of 4 fermion

parities around respective octagon plaquettes.

This gives 1
4(N2 ) constraints respectively.

GSD = 2
N
2 −1

2(
N
4 −1)+2(N8 −1)

= 4
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Ground State Degeneracy

The GSD is of topological nature, i.e. GS can be labeled by
eigenvalues of non-local Wilson loop operators.

• Wilson loop: W` ≡
∏

n,m∈`(iγnγm)

• W 2
` = 1, i.e. W` = ±1

• [Wx ,Wy ] = [Wx ,H] = [Wy ,H] = 0

• The 4 degenerate GS are distinguished by
their eigenvalues under Wx and Wy .
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Excitations

Exicted States are defined by O(1,2)
α,β = −1 for some α, β.

Fixed Γ =
∏
α∈AO

(1)
α =

∏
α∈B O

(2)
β =

∏
α∈C O

(1)
γ

means excitations can only be created in pairs of plaquettes of the
same type. This is achieved by open string operators.

Braiding statistics:
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Physical realization

Fu, Kane(2008):

• Trijunction of SCs on top of TI

• MF exists at crossing point for the yellow
regions of the phase diagram

Setup:

• Array of SC islands on top of TI

• SC phases are fixed by external magnetic
field to φ = 0,±2π

3

• ”Vortex” (”Antivortex”): Phase winds by
(−)2π around trijunction
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Physical realization

Hamiltonian:

H↵(ng) = Ec

✓
�i

@

@'↵
� ng

◆2

� EJ

X

h↵, �i
cos('↵ � '� � a↵�)

”charging energy”
to transfer a Cooper pair

number operator for
transfered Cooper pairs

”o↵set charge”
tunable by external

electric fields
”o↵set phase”
chosen so that minimum
Josephson energy is at 0, ±2⇡

3

The charging energy term and the Josephson energy term do not
commute and so the superconducting phase is a quantum mechanical
variable.

We will study the effective Hamiltonian in the limit EJ � Ec .
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Physical realization

How do the Majorana fermions enter the story?

Ec = 0 ⇒ φ is a good quantum number.

The effect of any two MFs γ1,2 is that one fermion d = γ1 + iγ2 can
be added to the ground state at no energy cost:

|φ, e〉 =
∑

n e
iφn|2n〉

|φ, o〉 =
∑

n e
iφ(n+ 1

2
)|2n + 1〉

• The occupation d†d = (1 + iγ1γ2)/2 is fixed by the total electron
number mod 2: iγ1γ2 = (−1)N .

• On the level of states we have |φ+ 2π, e/o〉 = ±|φ, e/o〉
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Physical realization

How do the Majorana fermions enter the story?

The constraint on the states is removed by a gauge transformation

|Ψ̃〉 = Ω†|Ψ〉 with Ω = exp
(
i(1− iγ1γ2)φ4

)

This transformation acts trivially on the even states and makes the
odd states periodic when φ→ φ+ 2π

H̃ = Ω†HΩ = Ec(−i∂φ − ng − 1
2(1− iγ1γ2))2 + Josephson term

Charging energy couples indirectly to the MFs via a constraint on the
eigenstates.
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Phase slips

φ→ φ+ 2π at a given plaquette exchanges the MFs at this plaquette.

Fu, Kane(2008):
Two Majorana bound states are created or
fused when φ passes through π.

The braiding in a 2π phase slip is implemented by: U = 1+γ1γ3√
2

1+γ2γ4√
2



images/comlab.pdf

Phase slips

φ→ φ+ 2π at a given plaquette exchanges the MFs at this plaquette.

Fu, Kane(2008):
Two Majorana bound states are created or
fused when φ passes through π.

The braiding in a 2π phase slip is implemented by: U = 1+γ1γ3√
2

1+γ2γ4√
2



images/comlab.pdf

Phase slips

φ→ φ+ 2π at a given plaquette exchanges the MFs at this plaquette.

Fu, Kane(2008):
Two Majorana bound states are created or
fused when φ passes through π.

The braiding in a 2π phase slip is implemented by: U = 1+γ1γ3√
2

1+γ2γ4√
2



images/comlab.pdf

Effective Hamiltonian

Ec � EJ . Two physical effects:

• Small phase fluctuations around the potential minima
Described by a quantum harmonic oscillator

ε0α ≈ (α + 1/2)
√

8EJEc with α ∈ N
• Phase slips

Charging energy = kinetic energy for quantum phase slips
=tunneling between degenerate potential minima

'

E

0 2⇡ 4⇡

t1,1

t2,2 Hα(ng ) = ε0 +
(
tα Ûe2πing + h.c.

)

Û = 1+γ1γ3√
2

1+γ2γ4√
2

, tα ∝ e−
√

2EJ/Ec
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Four body interaction term

Hα(ng ) = ε0 +
(
tα Ûe2πing + h.c.

)
, Û = 1+γ1γ3√

2

1+γ2γ4√
2

When we insert Û into Hα(ng ) we find

Hα(ng ) = ε0 − tα cos(2πng )γ1γ2γ3γ4 + tα sin(2πng )(iγ1γ3 + iγ2γ4)

Set 2ng ∈ N and precisely obtain the fourbody interaction O(1)
α .
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When we insert Û into Hα(ng ) we find

Hα(ng ) = ε0 − tα cos(2πng )γ1γ2γ3γ4 + tα sin(2πng )(iγ1γ3 + iγ2γ4)

Set 2ng ∈ N and precisely obtain the fourbody interaction O(1)
α .



images/comlab.pdf

Four body interaction term

Hα(ng ) = ε0 +
(
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Eight body interaction term

Idea: Introduce tunnel couplings between adjacent square islands

For example:

H = ε0 + tα(iγ1γ2)(iγ3γ4) + δ(iγ4γ5)

GS of unperturbed Hamiltonian: | ± 1,∓1〉
A single virtual tunneling event leaves GS
manifold:

(iγ4γ5)| ± 1,∓1〉 ∝ | ± 1,±1〉

A 4th order process (γ4γ5), (γ6γ7), (γ8γ9), (γ10γ7) brings the system
back to the GS manifold! This gives terms:

Hβ = − 5δ4

16t3α
O(2)
β
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Fermionic Z2 Topological Order

Physical realization

Stabilizer measurement
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Stabilizer measurement

How do we measure the eigenvalue of the 8-body operator O(2)
β ?

1) Prepare the system in a stabilizer eigenstate

2) Adiabatically (τ � t3α/δ
4) turn on the

charging energy on the octagon island:

Hβ(ng ) = − 5δ4

16t3α
O(2)
β +

(
tβŴ e2πing + h.c.

)

= -
[

5δ4

16t3α
+

tβ
4

]
O(2)
β + tβVβ(ng )

3) Couple the octagon island to a harmonic oscillator and measure
the energy gap to the next excited harmonic oscillator level.

4) Adiabatically decrease the charging energy to return to the
stabilizer eigenstate
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