Majorana Fermion Surface Code for Fault-Tolerant Quantum Computation

by Sagar Vijay and Liang Fu (arXiv:1509.08134)

Constantin Schrade

University of Basel

Outline

Fermionic \mathbb{Z}_2 [Topological Order](#page-2-0)

[Physical realization](#page-20-0)

[Stabilizer measurement](#page-49-0)

Outline

Fermionic \mathbb{Z}_2 [Topological Order](#page-2-0)

[Physical realization](#page-20-0)

[Stabilizer measurement](#page-49-0)

Fermionic \mathbb{Z}_2 Topological Order

$$
\mathcal{O}_{\alpha}^{(1)} = \prod_{n \in \text{vertex}(\alpha)} \gamma_n
$$

$$
\mathcal{O}_{\beta}^{(2)} = \prod_{n \in \text{vertex}(\beta)} \gamma_n
$$

Fermionic \mathbb{Z}_2 Topological Order

System:

- Square/Octagon lattice with one Majorana per site
- $\{\gamma_n, \gamma_m\} = 2\delta_{nm}$
- Periodic boundary conditions

$$
\mathcal{O}_{\alpha}^{(1)} = \prod_{n \in \text{vertex}(\alpha)} \gamma_n
$$

$$
\mathcal{O}_{\beta}^{(2)} = \prod_{n \in \text{vertex}(\beta)} \gamma_n
$$

 (1)

Fermionic \mathbb{Z}_2 Topological Order

$$
\mathcal{O}_{\alpha}^{(1)} = \prod_{n \in \text{vertex}(\alpha)} \gamma_n
$$

$$
\mathcal{O}_{\beta}^{(2)} = \prod_{n \in \text{vertex}(\beta)} \gamma_n
$$

System:

- Square/Octagon lattice with one Majorana per site
- $\{\gamma_n, \gamma_m\} = 2\delta_{nm}$
- Periodic boundary conditions

Hamiltonian: $H = -u_1 \sum_\alpha \mathcal{O}^{(1)}_\alpha - u_2 \sum_\beta \mathcal{O}^{(2)}_\beta$ β

- Plaquette operators mutually commute
- $\bullet\,$ Eigenvalues $\mathcal{O}^{(1,2)}_{\alpha,\beta}=\pm1$
- Ground state: $\mathcal{O}_{\alpha,\beta}^{(1,2)}=+1$ $\forall \alpha,\beta$
- \bullet Excited states: $\mathcal{O}_{\alpha, \beta}^{(1,2)} = -1$ for some α, β

Total fermion parity Γ is conserved.

 $\Gamma = (i\gamma_1\gamma_2)...(i\gamma_{N-1}\gamma_N) = i^{N/2} \prod_n \gamma_n$ with $[\Gamma, H] = 0$

We study the system in a sector of fixed fermion parity Γ.

- \bullet Ground state is defined by $\mathcal{O}_{\alpha,\beta}^{(1,2)}=+1$ $\forall \alpha,\beta$
- Each constraint reduced Hilbert space dimension by $1/2$

We devide the system into three types of plaquettes with different color:

We devide the system into three types of plaquettes with different color:

•
$$
\Gamma = \prod_{\alpha \in A} \mathcal{O}_{\alpha}^{(1)} = \prod_{\alpha \in B} \mathcal{O}_{\beta}^{(2)} = \prod_{\alpha \in C} \mathcal{O}_{\gamma}^{(1)}
$$

This gives 1 constraint per color.

We devide the system into three types of plaquettes with different color:

•
$$
\Gamma = \prod_{\alpha \in A} \mathcal{O}_{\alpha}^{(1)} = \prod_{\alpha \in B} \mathcal{O}_{\beta}^{(2)} = \prod_{\alpha \in C} \mathcal{O}_{\gamma}^{(1)}
$$

This gives 1 constraint per color.

• $\mathcal{O}_{\alpha}^{(1)} = +1 \ \forall \ \alpha \text{ fixes products of two fermion}$ parities around all square plaquettes.

This gives $\frac{1}{2}(\frac{N}{2})$ $\frac{N}{2}$) constraints.

We devide the system into three types of plaquettes with different color:

•
$$
\Gamma = \prod_{\alpha \in A} \mathcal{O}_{\alpha}^{(1)} = \prod_{\alpha \in B} \mathcal{O}_{\beta}^{(2)} = \prod_{\alpha \in C} \mathcal{O}_{\gamma}^{(1)}
$$

This gives 1 constraint per color.

• $\mathcal{O}_{\alpha}^{(1)} = +1 \ \forall \ \alpha \text{ fixes products of two fermion}$ parities around all square plaquettes.

This gives $\frac{1}{2}(\frac{N}{2})$ $\frac{N}{2}$) constraints.

 \bullet $\ {\cal O}^{(2)}_{\beta,\gamma}=+1$ \forall α fixes products of 4 fermion parities around respective octagon plaquettes.

This gives $\frac{1}{4}(\frac{N}{2})$ $\frac{N}{2}$) constraints respectively.

We devide the system into three types of plaquettes with different color:

•
$$
\Gamma = \prod_{\alpha \in A} \mathcal{O}_{\alpha}^{(1)} = \prod_{\alpha \in B} \mathcal{O}_{\beta}^{(2)} = \prod_{\alpha \in C} \mathcal{O}_{\gamma}^{(1)}
$$

This gives 1 constraint per color.

• $\mathcal{O}_{\alpha}^{(1)} = +1 \ \forall \ \alpha \text{ fixes products of two fermion}$ parities around all square plaquettes.

This gives $\frac{1}{2}(\frac{N}{2})$ $\frac{N}{2}$) constraints.

 \bullet $\ {\cal O}^{(2)}_{\beta,\gamma}=+1$ \forall α fixes products of 4 fermion parities around respective octagon plaquettes.

This gives $\frac{1}{4}(\frac{N}{2})$ $\frac{N}{2}$) constraints respectively.

$$
\text{GSD} = \frac{2^{\frac{N}{2}-1}}{2^{(\frac{N}{4}-1)+2(\frac{N}{8}-1)}} = 4
$$

The GSD is of topological nature, i.e. GS can be labeled by eigenvalues of non-local Wilson loop operators.

The GSD is of topological nature, i.e. GS can be labeled by eigenvalues of non-local Wilson loop operators.

\n- Wilson loop:
$$
W_{\ell} \equiv \prod_{n,m \in \ell} (i\gamma_n \gamma_m)
$$
\n

The GSD is of topological nature, i.e. GS can be labeled by eigenvalues of non-local Wilson loop operators.

• Wilson loop: $W_\ell \equiv \prod_{n,m\in\ell} (i\gamma_n\gamma_m)$

•
$$
W_{\ell}^2 = 1
$$
, i.e. $W_{\ell} = \pm 1$

The GSD is of topological nature, i.e. GS can be labeled by eigenvalues of non-local Wilson loop operators.

• Wilson loop: $W_\ell \equiv \prod_{n,m\in\ell} (i\gamma_n\gamma_m)$

•
$$
W_{\ell}^2 = 1
$$
, i.e. $W_{\ell} = \pm 1$

•
$$
[W_x, W_y] = [W_x, H] = [W_y, H] = 0
$$

The GSD is of topological nature, i.e. GS can be labeled by eigenvalues of non-local Wilson loop operators.

• Wilson loop: $W_\ell \equiv \prod_{n,m\in\ell} (i\gamma_n\gamma_m)$

•
$$
W_{\ell}^2 = 1
$$
, i.e. $W_{\ell} = \pm 1$

- $[W_x, W_y] = [W_x, H] = [W_y, H] = 0$
- The 4 degenerate GS are distinguished by their eigenvalues under W_x and W_y .

Excitations

Exicted States are defined by $\mathcal{O}_{\alpha,\beta}^{(1,2)}=-1$ for some $\alpha,\beta.$

Excitations

Exicted States are defined by $\mathcal{O}_{\alpha,\beta}^{(1,2)}=-1$ for some $\alpha,\beta.$

$$
\textsf{Fixed} \ \ \Gamma = \prod_{\alpha \in A} \mathcal{O}_\alpha^{(1)} = \prod_{\alpha \in B} \mathcal{O}_\beta^{(2)} = \prod_{\alpha \in C} \mathcal{O}_\gamma^{(1)}
$$

means excitations can only be created in pairs of plaquettes of the same type. This is achieved by open string operators.

Excitations

Exicted States are defined by $\mathcal{O}_{\alpha,\beta}^{(1,2)}=-1$ for some $\alpha,\beta.$

$$
\textsf{Fixed} \ \ \Gamma = \prod_{\alpha \in A} \mathcal{O}_\alpha^{(1)} = \prod_{\alpha \in B} \mathcal{O}_\beta^{(2)} = \prod_{\alpha \in C} \mathcal{O}_\gamma^{(1)}
$$

means excitations can only be created in pairs of plaquettes of the same type. This is achieved by open string operators.

Braiding statistics:

Outline

Fermionic \mathbb{Z}_2 [Topological Order](#page-2-0)

[Physical realization](#page-20-0)

[Stabilizer measurement](#page-49-0)

Fu, Kane(2008):

- Trijunction of SCs on top of TI
- MF exists at crossing point for the yellow regions of the phase diagram

Fu, Kane(2008):

- Trijunction of SCs on top of TI
- MF exists at crossing point for the yellow regions of the phase diagram

Setup:

- Array of SC islands on top of TI
- SC phases are fixed by external magnetic field to $\phi = 0, \pm \frac{2\pi}{3}$ 3
- "Vortex" ("Antivortex"): Phase winds by $(-)2\pi$ around trijunction

Hamiltonian:

The charging energy term and the Josephson energy term do not commute and so the superconducting phase is a quantum mechanical variable.

We will study the effective Hamiltonian in the limit $E_1 \gg E_c$.

How do the Majorana fermions enter the story?

 $E_c = 0 \Rightarrow \phi$ is a good quantum number.

How do the Majorana fermions enter the story?

 $E_c = 0 \Rightarrow \phi$ is a good quantum number.

The effect of any two MFs $\gamma_{1,2}$ is that one fermion $d = \gamma_1 + i\gamma_2$ can be added to the ground state at no energy cost:

$$
|\phi, e\rangle = \sum_{n} e^{i\phi n} |2n\rangle
$$

$$
|\phi, o\rangle = \sum_{n} e^{i\phi(n + \frac{1}{2})} |2n + 1\rangle
$$

How do the Majorana fermions enter the story?

 $E_c = 0 \Rightarrow \phi$ is a good quantum number.

The effect of any two MFs $\gamma_{1,2}$ is that one fermion $d = \gamma_1 + i\gamma_2$ can be added to the ground state at no energy cost:

$$
|\phi, e\rangle = \sum_{n} e^{i\phi n} |2n\rangle
$$

$$
|\phi, o\rangle = \sum_{n} e^{i\phi(n + \frac{1}{2})} |2n + 1\rangle
$$

• The occupation $d^\dagger d = (1 + i \gamma_1 \gamma_2)/2$ is fixed by the total electron number mod 2: $i\gamma_1\gamma_2 = (-1)^N$.

How do the Majorana fermions enter the story?

 $E_c = 0 \Rightarrow \phi$ is a good quantum number.

The effect of any two MFs $\gamma_{1,2}$ is that one fermion $d = \gamma_1 + i\gamma_2$ can be added to the ground state at no energy cost:

$$
|\phi, e\rangle = \sum_{n} e^{i\phi n} |2n\rangle
$$

$$
|\phi, o\rangle = \sum_{n} e^{i\phi(n + \frac{1}{2})} |2n + 1\rangle
$$

- The occupation $d^\dagger d = (1 + i \gamma_1 \gamma_2)/2$ is fixed by the total electron number mod 2: $i\gamma_1\gamma_2 = (-1)^N$.
- On the level of states we have $|\phi + 2\pi, e/o\rangle = \pm |\phi, e/o\rangle$

How do the Majorana fermions enter the story?

The constraint on the states is removed by a gauge transformation $\overline{}$

$$
|\widetilde{\Psi}\rangle=\Omega^{\dagger}|\Psi\rangle\quad\text{with}\quad \Omega=\exp\left(i(1-i\gamma_{1}\gamma_{2})\tfrac{\phi}{4}\right)
$$

How do the Majorana fermions enter the story?

The constraint on the states is removed by a gauge transformation

$$
|\widetilde{\Psi}\rangle=\Omega^{\dagger}|\Psi\rangle\quad\text{with}\quad \Omega=\exp\left(i(1-i\gamma_1\gamma_2)\tfrac{\phi}{4}\right)
$$

This transformation acts trivially on the even states and makes the odd states periodic when $\phi \rightarrow \phi + 2\pi$

How do the Majorana fermions enter the story?

The constraint on the states is removed by a gauge transformation

$$
|\widetilde{\Psi}\rangle=\Omega^{\dagger}|\Psi\rangle\quad\text{with}\quad \Omega=\exp\left(i(1-i\gamma_1\gamma_2)\tfrac{\phi}{4}\right)
$$

This transformation acts trivially on the even states and makes the odd states periodic when $\phi \rightarrow \phi + 2\pi$

 $\widetilde{H} = \Omega^{\dagger} H \Omega = E_c (-i\partial_{\phi} - n_g - \frac{1}{2})$ $\frac{1}{2}(1-i\gamma_1\gamma_2))^2+$ Josephson term

How do the Majorana fermions enter the story?

The constraint on the states is removed by a gauge transformation

$$
|\widetilde{\Psi}\rangle=\Omega^{\dagger}|\Psi\rangle\quad\text{with}\quad \Omega=\exp\left(i(1-i\gamma_1\gamma_2)\tfrac{\phi}{4}\right)
$$

This transformation acts trivially on the even states and makes the odd states periodic when $\phi \rightarrow \phi + 2\pi$

 $\widetilde{H} = \Omega^{\dagger} H \Omega = E_c (-i\partial_{\phi} - n_g - \frac{1}{2})$ $\frac{1}{2}(1-i\gamma_1\gamma_2))^2+$ Josephson term

Charging energy couples indirectly to the MFs via a constraint on the eigenstates.

Phase slips

 $\phi \rightarrow \phi + 2\pi$ at a given plaquette exchanges the MFs at this plaquette.

Phase slips

 $\phi \rightarrow \phi + 2\pi$ at a given plaquette exchanges the MFs at this plaquette.

Fu, Kane(2008):

Two Majorana bound states are created or fused when ϕ passes through π .

Phase slips

 $\phi \rightarrow \phi + 2\pi$ at a given plaquette exchanges the MFs at this plaquette.

Fu, Kane(2008):

Two Majorana bound states are created or fused when ϕ passes through π .

The braiding in a 2π phase slip is implemented by: U $\frac{1+\gamma_1\gamma_3}{}$ 2 1+ √ $\gamma_2\gamma_4$ 2

 $E_c \ll E_J$. Two physical effects:

- $E_c \ll E_J$. Two physical effects:
- Small phase fluctuations around the potential minima Described by a quantum harmonic oscillator

 $\epsilon_{\alpha}^0 \approx (\alpha + 1/2)\sqrt{8E_JE_c}$ with $\alpha \in \mathbb{N}$

- $E_c \ll E_l$. Two physical effects:
- Small phase fluctuations around the potential minima Described by a quantum harmonic oscillator

$$
\epsilon_\alpha^0 \approx (\alpha + 1/2)\sqrt{8E_JE_c} \text{ with } \alpha \in \mathbb{N}
$$

• Phase slips

Charging energy $=$ kinetic energy for quantum phase slips =tunneling between degenerate potential minima

- $E_c \ll E_l$. Two physical effects:
- Small phase fluctuations around the potential minima Described by a quantum harmonic oscillator

$$
\epsilon_\alpha^0 \approx (\alpha + 1/2)\sqrt{8E_JE_c} \text{ with } \alpha \in \mathbb{N}
$$

• Phase slips

Charging energy $=$ kinetic energy for quantum phase slips =tunneling between degenerate potential minima

- $E_c \ll E_l$. Two physical effects:
- Small phase fluctuations around the potential minima Described by a quantum harmonic oscillator

$$
\epsilon_\alpha^0 \approx (\alpha + 1/2)\sqrt{8E_JE_c} \text{ with } \alpha \in \mathbb{N}
$$

• Phase slips

Charging energy $=$ kinetic energy for quantum phase slips =tunneling between degenerate potential minima

$$
H_{\alpha}(n_{g}) = \epsilon_{0} + \left(t_{\alpha} \ \hat{U} e^{2\pi i n_{g}} + \text{h.c.}\right)
$$

$$
\hat{U} = \frac{1 + \gamma_{1}\gamma_{3}}{\sqrt{2}} \frac{1 + \gamma_{2}\gamma_{4}}{\sqrt{2}}, \quad t_{\alpha} \propto e^{-\sqrt{2E_{J}/E_{c}}}
$$

Four body interaction term

$$
H_{\alpha}(n_g) = \epsilon_0 + \left(t_{\alpha} \; \hat{U} e^{2\pi i n_g} + \text{h.c.}\right) \quad , \quad \hat{U} = \frac{1 + \gamma_1 \gamma_3}{\sqrt{2}} \frac{1 + \gamma_2 \gamma_4}{\sqrt{2}}
$$

$$
H_{\alpha}(n_g) = \epsilon_0 + \left(t_{\alpha} \; \hat{U} e^{2\pi i n_g} + \text{h.c.}\right) \quad , \quad \hat{U} = \frac{1 + \gamma_1 \gamma_3}{\sqrt{2}} \frac{1 + \gamma_2 \gamma_4}{\sqrt{2}}
$$

When we insert \hat{U} into $H_{\alpha}(n_g)$ we find

 $H_{\alpha}(n_{g}) = \epsilon_0 - t_{\alpha} \cos(2\pi n_{g}) \gamma_1 \gamma_2 \gamma_3 \gamma_4 + t_{\alpha} \sin(2\pi n_{g}) (i \gamma_1 \gamma_3 + i \gamma_2 \gamma_4)$

$$
H_{\alpha}(n_g) = \epsilon_0 + \left(t_{\alpha} \; \hat{U} e^{2\pi i n_g} + \text{h.c.}\right) \quad , \quad \hat{U} = \frac{1 + \gamma_1 \gamma_3}{\sqrt{2}} \frac{1 + \gamma_2 \gamma_4}{\sqrt{2}}
$$

When we insert \hat{U} into $H_{\alpha}(n_{\epsilon})$ we find

 $H_{\alpha}(n_g) = \epsilon_0 - t_{\alpha} \cos(2\pi n_g) \gamma_1 \gamma_2 \gamma_3 \gamma_4 + t_{\alpha} \sin(2\pi n_g) (i \gamma_1 \gamma_3 + i \gamma_2 \gamma_4)$

Set $2n_{\text{g}} \in \mathbb{N}$ and precisely obtain the fourbody interaction $\mathcal{O}^{(1)}_\alpha$.

Idea: Introduce tunnel couplings between adjacent square islands

Idea: Introduce tunnel couplings between adjacent square islands

For example:

 $H = \epsilon_0 + t_\alpha (i \gamma_1 \gamma_2)(i \gamma_3 \gamma_4) + \delta (i \gamma_4 \gamma_5)$

Idea: Introduce tunnel couplings between adjacent square islands

For example:

$$
H = \epsilon_0 + t_\alpha (i\gamma_1\gamma_2)(i\gamma_3\gamma_4) + \delta (i\gamma_4\gamma_5)
$$

GS of unperturbed Hamiltonian: $|\pm 1,\mp 1\rangle$

Idea: Introduce tunnel couplings between adjacent square islands

For example:

 $H = \epsilon_0 + t_\alpha (i\gamma_1\gamma_2)(i\gamma_3\gamma_4) + \delta (i\gamma_4\gamma_5)$

GS of unperturbed Hamiltonian: $|\pm 1,\mp 1\rangle$

A single virtual tunneling event leaves GS manifold:

 $(i\gamma_4\gamma_5)|\pm 1,\mp 1\rangle \propto |\pm 1,\pm 1\rangle$

Idea: Introduce tunnel couplings between adjacent square islands

For example:

 $H = \epsilon_0 + t_\alpha (i\gamma_1\gamma_2)(i\gamma_3\gamma_4) + \delta (i\gamma_4\gamma_5)$

GS of unperturbed Hamiltonian: $|\pm 1,\mp 1\rangle$

A single virtual tunneling event leaves GS manifold:

 $(i\gamma_4\gamma_5)|\pm 1,\mp 1\rangle \propto |\pm 1,\pm 1\rangle$

A 4th order process $(\gamma_4\gamma_5), (\gamma_6\gamma_7), (\gamma_8\gamma_9), (\gamma_{10}\gamma_7)$ brings the system back to the GS manifold! This gives terms:

$$
H_{\beta}=-\frac{5\delta^4}{16t_{\alpha}^3}\mathcal{O}_{\beta}^{(2)}
$$

Outline

Fermionic \mathbb{Z}_2 [Topological Order](#page-2-0)

[Physical realization](#page-20-0)

[Stabilizer measurement](#page-49-0)

How do we measure the eigenvalue of the 8-body operator $\mathcal{O}^{(2)}_\beta$ $\frac{1}{\beta}$?

How do we measure the eigenvalue of the 8-body operator $\mathcal{O}^{(2)}_\beta$ $\frac{1}{\beta}$?

How do we measure the eigenvalue of the 8-body operator $\mathcal{O}^{(2)}_\beta$ $\frac{1}{\beta}$?

1) Prepare the system in a stabilizer eigenstate

How do we measure the eigenvalue of the 8-body operator $\mathcal{O}^{(2)}_\beta$ $\frac{1}{\beta}$?

- 1) Prepare the system in a stabilizer eigenstate
- 2) Adiabatically $(\tau \gg t_\alpha^3/\delta^4)$ turn on the charging energy on the octagon island:

$$
H_{\beta}(n_g) = -\frac{5\delta^4}{16t_{\alpha}^3} \mathcal{O}_{\beta}^{(2)} + \left(t_{\beta} \hat{W} e^{2\pi i n_g} + \text{h.c.}\right)
$$

= -\left[\frac{5\delta^4}{16t_{\alpha}^3} + \frac{t_{\beta}}{4}\right] \mathcal{O}_{\beta}^{(2)} + t_{\beta} V_{\beta}(n_g)

How do we measure the eigenvalue of the 8-body operator $\mathcal{O}^{(2)}_\beta$ $\frac{1}{\beta}$?

- 1) Prepare the system in a stabilizer eigenstate
- 2) Adiabatically $(\tau \gg t_\alpha^3/\delta^4)$ turn on the charging energy on the octagon island:

$$
H_{\beta}(n_g) = -\frac{5\delta^4}{16t_{\alpha}^3} \mathcal{O}_{\beta}^{(2)} + \left(t_{\beta} \hat{W} e^{2\pi i n_g} + \text{h.c.}\right)
$$

= -\left[\frac{5\delta^4}{16t_{\alpha}^3} + \frac{t_{\beta}}{4}\right] \mathcal{O}_{\beta}^{(2)} + t_{\beta} V_{\beta}(n_g)

3) Couple the octagon island to a harmonic oscillator and measure the energy gap to the next excited harmonic oscillator level.

How do we measure the eigenvalue of the 8-body operator $\mathcal{O}^{(2)}_\beta$ $\frac{1}{\beta}$?

- 1) Prepare the system in a stabilizer eigenstate
- 2) Adiabatically $(\tau \gg t_\alpha^3/\delta^4)$ turn on the charging energy on the octagon island:

$$
H_{\beta}(n_g) = -\frac{5\delta^4}{16t_{\alpha}^3} \mathcal{O}_{\beta}^{(2)} + \left(t_{\beta} \hat{W} e^{2\pi i n_g} + \text{h.c.}\right)
$$

= -\left[\frac{5\delta^4}{16t_{\alpha}^3} + \frac{t_{\beta}}{4}\right] \mathcal{O}_{\beta}^{(2)} + t_{\beta} V_{\beta}(n_g)

- 3) Couple the octagon island to a harmonic oscillator and measure the energy gap to the next excited harmonic oscillator level.
- 4) Adiabatically decrease the charging energy to return to the stabilizer eigenstate